UNMODIFIED LDH AS REINFORCING FILLER FOR XNBR AND THE DEVELOPMENT OF FLAME-RETARDANT ELASTOMER COMPOSITES

2014 ◽  
Vol 87 (4) ◽  
pp. 606-616 ◽  
Author(s):  
Debdipta Basu ◽  
Amit Das ◽  
Jinu Jacob George ◽  
De-Yi Wang ◽  
Klaus Werner Stöckelhuber ◽  
...  

ABSTRACT Layered double hydroxides (LDHs), inorganic clay materials with mixed metals present in the structure along with some interlayer cations, have immense potential for use as a filler in rubbers. We report the preparation and properties of a set of novel nanocomposites consisting of a LDH dispersed in carboxylic–acrylonitrile–butadiene rubber (XNBR). We succeed in obtaining significantly improved physical properties by altering the chemical structure of a LDH with Zn and Al ions (Zn-Al LDH). In particular, we discover a significant reinforcing effect. This occurs despite the size difference between the LDH and traditional reinforcing fillers such as precipitated silica and carbon black. Both the elastic modulus and tensile strength increase. This increase is a function of the LDH concentration and, reaches a maximum value when the LDH concentration is at 100 phr. Experimental evidence suggests that this reinforcing effect is due to direct ion-to-ion interaction between the filler and the matrix. In addition, we report that the presence of the nanofiller positively affects the flame retardence and thermal decomposition of the nanocomposites. We attribute this effect to the presence of a layer formed by the nanofiller.

2021 ◽  
Author(s):  
Max Olsen ◽  
Ragni Hatlebakk ◽  
Chris Holcroft ◽  
Roar Egil Flatebø ◽  
Asif Hoq ◽  
...  

Abstract This paper reports the development and testing, of a Phosphate controlled dissolution glass composition used to strengthen the matrix of chalk whilst retaining the permeability of the rock, facilitating improved hydrocarbon recovery in unstable wells. Multiple versions of the glass solutions and different types of colloidal silica were extensively tested in the laboratory to determine injectability and reactivity with calcium carbonate rocks. The goal of the testing was to determine the best performing solution for use in a field trial in the Norwegian North Sea. The laboratory testing included filtration and core flood tests to determine the injectability of the solutions and post treatment permeability, and Brazilian strength tests to determine the tensile strength of the treated chalk cores. The filterability was tested through filter screen sizes ranging from 5 to 0.6 µm. Core flood testing was performed on 10 cm long chalk cores with 1.5 mD permeability. The glass solutions showed the best results in the filtration and core flood testing, achieving significantly greater invasion depth than any of the colloidal silica samples. The phosphate glass treated chalk cores maintained 70 to 100% of the original permeability while delivering a 3 to 5 fold tensile strength increase. The lab tests demonstrated the potential of a glass based treatment to strengthen chalk formations without impeding permeability.Based on the promising results from the lab tests, it was decided to trial the selected glass solution in a mature vertical proppant fractured well. The test confirmed that the glass solution could be pumped into the well, but the test failed pre-maturely after two months of varied production, and the trial will not be covered in this paper.However, due to the high value in being able to stabilize chalk in the field, the Operator is evaluating a new trial in a horizontal well, and learnings from the first trial will be used to inform further lab tests in the next phase. The glass solution used in this trial is being further developed to be used in other formation types, such as sand and non-calcium containing reservoirs.


e-Polymers ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Dejiang Yang ◽  
Chun Wei ◽  
Yongyang Gong ◽  
Tianxi Liu ◽  
Jian Lv

AbstractPolymers modified by graphene have become an attractive method to enhance the matrix properties, wherein the dispersion of graphene in the matrix and the interfacial interactions between graphene and matrix are critical to influence the final performance. In the present work, graphene nanosheet (GNS)-modified hydrogenated nitrile butadiene rubber (GNS/HNBR) composites were prepared via solution-mixing and mechanical-blending methods. The curing performance, mechanical properties and heat resistance of the prepared composites were studied. The results showed that when the content was 0.2 wt%, the tensile strength and modulus at 300% elongation of the GNS/HNBR composite prepared via solution-mixing method reached 19.36 and 3.62 MPa, which increased by 32% and 18% compared with those of pure HNBR, respectively. In addition, the swelling index of the composite in cyclohexane was decreased from 413% to 337%. On the other hand, the tensile property of GNS/HNBR composite prepared by mechanical-mixing method became poor. SEM observation showed that GNS was well dispersed and incorporated into HNBR via the solution-mixing method, resulting in a significant reinforcing effect.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2284
Author(s):  
Miaomiao Qian ◽  
Bo Zou ◽  
Zhixiao Chen ◽  
Weimin Huang ◽  
Xiaofeng Wang ◽  
...  

Two factors, the crosslinking degree of the matrix (ν) and the size of the filler (Sz), have significant impact on the Mullins effect of filled elastomers. Herein, the result. of the two factors on Mullins effect is systematically investigated by adjusting the crosslinking degree of the matrix via adding maleic anhydride into a rubber matrix and controlling the particle size of the filler via ball milling. The dissipation ratios (the ratio of energy dissipation to input strain energy) of different filled natural rubber/butadiene rubber (NR/BR) elastomer composites are evaluated as a function of the maximum strain in cyclic loading (εm). The dissipation ratios show a linear relationship with the increase of εm within the test range, and they depend on the composite composition (ν and Sz). With the increase of ν, the dissipation ratios decrease with similar slope, and this is compared with the dissipation ratios increase which more steeply with the increase in Sz. This is further confirmed through a simulation that composites with larger particle size show a higher strain energy density when the strain level increases from 25% to 35%. The characteristic dependence of the dissipation ratios on ν and Sz is expected to reflect the Mullins effect with mathematical expression to improve engineering performance or prevent failure of rubber products.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


2014 ◽  
pp. n/a-n/a ◽  
Author(s):  
Subramani Bhagavatheswaran Eshwaran ◽  
Debdipta Basu ◽  
Sankar Raman Vaikuntam ◽  
Burak Kutlu ◽  
Sven Wiessner ◽  
...  

Author(s):  
Dmitry Yu Borin ◽  
Mikhail V Vaganov

Abstract First-order reversal curve (FORC) analysis allows one to investigate composite magnetic materials by decomposing the magnetic response of a whole sample into individual responses of the elementary objects comprising the sample. In this work, we apply this technique to analysing silicone elastomer composites reinforced with ferromagnetic microparticles possessing low intrinsic coercivity. Even though the material of such particles does not demonstrate significant magnetic hysteresis, the soft matrix of the elastomers allows for the translational mobility of the particles and enables their magnetomechanical hysteresis which renders into a wasp-waisted major magnetization loop of the whole sample. It is demonstrated that the FORC diagrams of the composites contain characteristic wing features arising from the collective hysteretic magnetization of the magnetically soft particles. The influence of the matrix elasticity and particle concentration on the shape of the wing feature is investigated, and an approach to interpreting experimental FORC diagrams of the magnetically soft magnetoactive elastomers is proposed. The experimental data are in qualitative agreement with the results of the simulation of the particle magnetization process obtained using a model comprised of two magnetically soft particles embedded in an elastic environment.


2020 ◽  
Vol 2 (1) ◽  
pp. 28-35
Author(s):  
Rokki Manurung ◽  
Sutan Simanjuntak ◽  
Jesayas Sembiring ◽  
Richard A.M. Napitupulu ◽  
Suriady Sihombing

Composites are materials which are mixed with one or more different and heterogeneous reinforcement. Matrix materials can generally be polymers, ceramics and metals. The matrix in the composite serves to distribute the load into all reinforcing material. Matrix properties are usually ductile. The reinforcing material in the composite has the role of holding the load received by the composite material. The nature of the reinforcing material is usually rigid and tough. Strengthening materials commonly used so far are carbon fiber, glass fiber, ceramics. The use of natural fibers as a type of fiber that has advantages began to be applied as a reinforcing material in polymer composites. This study seeks to see the effect of the use of bamboo natural fibers in polyester resin matrix on the strength of polymer composites with random and straight lengthwise fiber variations. From the tensile test results it can be seen that bamboo fibers can increase the strength of polymer composites made from polyester resin and the position of the longitudinal fibers gives a significantly more strength increase than random fibers.


2021 ◽  
Vol 1019 ◽  
pp. 102-109
Author(s):  
Endow Mazumder ◽  
L.V. Prasad M.

The primary goal of this work is to report the results of the experimental outcome of Geopolymer concrete (GEO-C) which is prepared and cured at room temperature. GEO-C is prepared using a blend of ground granulated blast furnace slag (GGSG) and F Class Fly Ash, and the replacement is ranged from 0% to 100% of binder material, to find the optimum dosage of binder material. Sodium Hydroxide (NaOH) and Sodium Silicate (Na2SiO3) which are alkaline in nature, used primarily as an activating agent for the polymerization process of geopolymer. Experiments were conducted on samples by fixing the NaOH concentration as 14M for optimum strength and the alkaline activator ratio is fixed as one. Mechanical properties of GEO-C like compressive strength, rupture modulus (i.e. flexural strength), and split tensile strength were evaluated at the ages 7, 14, 28 days. From the results, it is observed that with the addition of GGSG in the blend the compressive, flexural, and tensile strength increase but there is a drastic reduction in the workability of the mixture.


Sign in / Sign up

Export Citation Format

Share Document