The Use of Controlled Dissolution Glass for the Consolidation of a High Porosity Chalk

2021 ◽  
Author(s):  
Max Olsen ◽  
Ragni Hatlebakk ◽  
Chris Holcroft ◽  
Roar Egil Flatebø ◽  
Asif Hoq ◽  
...  

Abstract This paper reports the development and testing, of a Phosphate controlled dissolution glass composition used to strengthen the matrix of chalk whilst retaining the permeability of the rock, facilitating improved hydrocarbon recovery in unstable wells. Multiple versions of the glass solutions and different types of colloidal silica were extensively tested in the laboratory to determine injectability and reactivity with calcium carbonate rocks. The goal of the testing was to determine the best performing solution for use in a field trial in the Norwegian North Sea. The laboratory testing included filtration and core flood tests to determine the injectability of the solutions and post treatment permeability, and Brazilian strength tests to determine the tensile strength of the treated chalk cores. The filterability was tested through filter screen sizes ranging from 5 to 0.6 µm. Core flood testing was performed on 10 cm long chalk cores with 1.5 mD permeability. The glass solutions showed the best results in the filtration and core flood testing, achieving significantly greater invasion depth than any of the colloidal silica samples. The phosphate glass treated chalk cores maintained 70 to 100% of the original permeability while delivering a 3 to 5 fold tensile strength increase. The lab tests demonstrated the potential of a glass based treatment to strengthen chalk formations without impeding permeability.Based on the promising results from the lab tests, it was decided to trial the selected glass solution in a mature vertical proppant fractured well. The test confirmed that the glass solution could be pumped into the well, but the test failed pre-maturely after two months of varied production, and the trial will not be covered in this paper.However, due to the high value in being able to stabilize chalk in the field, the Operator is evaluating a new trial in a horizontal well, and learnings from the first trial will be used to inform further lab tests in the next phase. The glass solution used in this trial is being further developed to be used in other formation types, such as sand and non-calcium containing reservoirs.

2021 ◽  
Vol 1019 ◽  
pp. 102-109
Author(s):  
Endow Mazumder ◽  
L.V. Prasad M.

The primary goal of this work is to report the results of the experimental outcome of Geopolymer concrete (GEO-C) which is prepared and cured at room temperature. GEO-C is prepared using a blend of ground granulated blast furnace slag (GGSG) and F Class Fly Ash, and the replacement is ranged from 0% to 100% of binder material, to find the optimum dosage of binder material. Sodium Hydroxide (NaOH) and Sodium Silicate (Na2SiO3) which are alkaline in nature, used primarily as an activating agent for the polymerization process of geopolymer. Experiments were conducted on samples by fixing the NaOH concentration as 14M for optimum strength and the alkaline activator ratio is fixed as one. Mechanical properties of GEO-C like compressive strength, rupture modulus (i.e. flexural strength), and split tensile strength were evaluated at the ages 7, 14, 28 days. From the results, it is observed that with the addition of GGSG in the blend the compressive, flexural, and tensile strength increase but there is a drastic reduction in the workability of the mixture.


2012 ◽  
Vol 517 ◽  
pp. 382-391 ◽  
Author(s):  
S.F. Santos ◽  
J.A. Rodrigues ◽  
G.H.D. Tonoli ◽  
A.E.F.S. Almeida ◽  
Holmer Savastano

The properties of cement based composites depend not only on the properties of their individual components but also on their interfacial characteristics and transition zone between fiber and matrix. There has been a renewed interest in the use of cellulosic pulp as micro-fiber reinforcement in cement based composites. The addition of nanoparticles, such as colloidal silica, to fiber-cement could allow a better control of its microstructure and the enhancement of the matrix/fiber interface. The objective of this work is to evaluate the effects of colloidal silica on the microstructure and mechanical performance of cementitious matrices and fiber-cement composites. These cementitious materials were prepared with 0%, 1.5%, 3%, 5% and 10% w/w colloidal silica suspension content. Cementitious matrices without fibers were produced by vibration. Fiber-cement composites with unbleached Eucalyptus kraft pulp as a micro-fiber reinforcement were produced by the slurry dewatering technique followed by pressing. All composite materials were cured by water immersion. A splitting (Brazilian) test was carried out to determine the tensile strength of cementitious matrices. Mechanical behavior of the fiber-cement composites was evaluated via modulus of rupture and fracture toughness based on load-displacement curves (L-d curves) under continuous loading and 3-point bending arrangement. The energy of fracture was measured through a stable crack propagation test with SENB (single-edge notched bending) configuration also under a 3-point bending arrangement. The matrix with highest content of colloidal silica suspension (10% w/w) presented high values of water absorption and consequently presented the lowest splitting tensile strength. The average values of modulus of rupture and fracture toughness of fiber-cement tend to decrease with increasing colloidal silica content. However, the pullout mechanism increased significantly in the fiber-cement composites with additions between 3% and 10% w/w of colloidal silica suspension as compared to that without any addition, noted by degree of improvement in the energy of fracture and by scanning electron microscopy micrographs (SEM). These findings show the potential use of colloidal silica to improve the transition zone between the cellulosic fiber and the cementitious matrix. The results of this study show an important way to engineer and control the fracture process of the composites.


Carbon ◽  
1998 ◽  
Vol 36 (9) ◽  
pp. 1327-1330 ◽  
Author(s):  
J. Mittal ◽  
H. Konno ◽  
M. Inagaki ◽  
O.P. Bahl

TAPPI Journal ◽  
2011 ◽  
Vol 10 (2) ◽  
pp. 17-24 ◽  
Author(s):  
ALESSANDRA GERLI ◽  
LEENDERT C. EIGENBROOD ◽  
SANNA NURMI

Various uncoated woodfree papers produced on a pilot paper machine were characterized for picking resistance, using an IGT printability tester, and standard sheet properties. The papers were produced with and without surface sizing or a debonding agent, with different filler types (ground calcium carbonate [GCC] or precipitated calcium carbonate [PCC]) and levels (20% and 25%), and by varying the calendering conditions. The goal was to assess the relationship between surface strength of these sheets and their bulk strength properties, such as tensile strength and internal bond. Variables such as the use of a debonding agent or the application of surface size had equal effect on picking resistance and tensile strength. Increase of filler content in paper or replacement of GCC with PCC reduced picking resistance, tensile strength, and internal bond. Increase of the calendering load, for both GCC and PCC sheets, reduced picking resistance but left tensile strength and internal bond unaffected. Picking resistance of the 25% PCC-containing sheets was affected at a significantly larger extent by an increase in calendering load than picking resistance of the 25% GCC-containing sheets. These results point out that the surface of a highly filled PCC sheet is particularly sensitive to surface damage by calendering.


2013 ◽  
Vol 658 ◽  
pp. 202-208 ◽  
Author(s):  
Dong Sam Park ◽  
Ho Su Jang ◽  
Woo Yeol Park

This paper gives a description of an experimental study on the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without generating large amount of heat. Horn, a key part of ultrasonic welding machine, should be designed very accurately to get the natural frequencies and vibration mode required. In this study, a horn is designed and developed for ultrasonic welding of Cu sheets. The tensile strength of welded parts is investigated for evaluation of weldability. Experimental parameters of welding test is set as follows; welding time 0.4s ~ 3.4sec. and vibration amplitude 40%, 60%, 80% and welding pressure 1.5bar, 2.0bar, 2.5bar. Samples are Cu sheets of 0.1mm thickness. Experimental results showed that the tensile strength increase as welding parameters increase, but when welding pressure is excessive, the tensile strength decrease due to fracture of the Cu sheets caused by over-welding. These results could be successfully applied for ultrasonic metal welding in various fields of manufacturing industry.


2014 ◽  
Vol 87 (4) ◽  
pp. 606-616 ◽  
Author(s):  
Debdipta Basu ◽  
Amit Das ◽  
Jinu Jacob George ◽  
De-Yi Wang ◽  
Klaus Werner Stöckelhuber ◽  
...  

ABSTRACT Layered double hydroxides (LDHs), inorganic clay materials with mixed metals present in the structure along with some interlayer cations, have immense potential for use as a filler in rubbers. We report the preparation and properties of a set of novel nanocomposites consisting of a LDH dispersed in carboxylic–acrylonitrile–butadiene rubber (XNBR). We succeed in obtaining significantly improved physical properties by altering the chemical structure of a LDH with Zn and Al ions (Zn-Al LDH). In particular, we discover a significant reinforcing effect. This occurs despite the size difference between the LDH and traditional reinforcing fillers such as precipitated silica and carbon black. Both the elastic modulus and tensile strength increase. This increase is a function of the LDH concentration and, reaches a maximum value when the LDH concentration is at 100 phr. Experimental evidence suggests that this reinforcing effect is due to direct ion-to-ion interaction between the filler and the matrix. In addition, we report that the presence of the nanofiller positively affects the flame retardence and thermal decomposition of the nanocomposites. We attribute this effect to the presence of a layer formed by the nanofiller.


2013 ◽  
Vol 750-752 ◽  
pp. 136-139
Author(s):  
Wen Jie Mei ◽  
Yu Zhu Xiong ◽  
Zhen Yu Liu ◽  
Jin Zhong Luo

Polyacrylic acid butyl ester (PBA) / poly (methyl methacrylate - maleic anhydride) [P(MMA-MAH)] was synthesized by emulsion polymerization. We got three core-shell particles of core-shell ratio 2/8,3/7 and 4/6 by the method, and blend them with PA6 in proportion of 5%,10% and 15%. Two-layer structure under the TEM proves the existence of core-shell particles, and the core-shell particles disperse uniformly under the SEM. The core-shell rate is 4/6 and PA6 ratio in the 10%, toughening effect is the best. The impact strength and tensile strength increase by 187% and 13.8% respectively, showing the unique nature of the core-shell particles.


2014 ◽  
Vol 941-944 ◽  
pp. 2414-2419
Author(s):  
Jian Liang Sun ◽  
Zheng Yi Jiang ◽  
Feng Jia ◽  
Yong Zhen Zhang

In the present work, detailed studies were made on the transformation characteristics, microstructure and mechanical properties of heavy shell ring (HSR) in the spray cooling process. The spray cooling device of HSR was designed. The 2.25Cr1Mo0.25V steel used in production of HSR for hydrogenation reactor was selected as the testing material. The simulation of spray cooling of HSR was carried out on ABAQUS. The constitutive model and continuous cooling transformation (CCT) diagram of 2.25Cr1Mo0.25V were determined. CCT diagram, metallograph and SEM results show that the bainite forms throughout the cooling rate range from 0.5 to 10 ℃/s, and martensite begins to be produced by increasing the cooling rate higher than 60℃/s; when the cooling rate is 10 ℃/s, with the increase of the deformation degrees, the ferrite grain size becomes small, the yield strength and tensile strength increase, the elongation decrease, So it is good for refining the grain to increase the deformation. The yield strength, tensile strength and elongation were obtained under different cooling technology.


2021 ◽  
Vol 1023 ◽  
pp. 61-66
Author(s):  
Watsada Siripongtana ◽  
Rungsinee Canyook

This research investigates the nickel content added by 1.1wt%, 2.2wt%, 3.7wt% and 4.5wt% on the microstructure and mechanical properties in the nodular cast iron. The results demonstrate that the microstructure of nickel addition consists of nodule graphite, ferrite and pearlite phase while nickel was added to 4.5 wt% the microstructure becomes ferrite transform to fully pearlite phase. In addition the ductile iron has the highest nodularity (0.79%), followed by 1.1%Ni (0.75%), 2.2%Ni (0.71%), 3.7%Ni (0.69%) and 4.5%Ni (0.58%). The hardness and tensile strength increase when increasing the nickel content. Elongation is enhanced with nickel increasing and reaches a maximum of 12% at 1.1 wt% Ni, then decreases with the further increase of nickel.


2016 ◽  
Vol 20 (6) ◽  
pp. 2137-2147 ◽  
Author(s):  
Miroslav Mijajlovic ◽  
Sonja Vidojkovic

After successful welding, destructive testing into test samples from Al 2024-T351 friction stir butt welds showed that tensile strength of the weld improve along the joint line, while dimensions of the weld nugget decrease. For those welds, both the base material and the welding tool constantly cool down during the welding phase. Obviously, the base material became overheated during the long dwelling phase what made conditions for creation of joints with the reduced mechanical properties. Preserving all process parameters but varying the dwelling time from 5-27 seconds a new set of welding is done to reach maximal achievable tensile strength. An analytical-numerical-experimental model is used for optimising the duration of the dwelling time while searching for the maximal tensile strength of the welds


Sign in / Sign up

Export Citation Format

Share Document