Effect of Quantity of Industrial Waste on Eco-Friendly Geopolymer Concrete

2021 ◽  
Vol 1019 ◽  
pp. 102-109
Author(s):  
Endow Mazumder ◽  
L.V. Prasad M.

The primary goal of this work is to report the results of the experimental outcome of Geopolymer concrete (GEO-C) which is prepared and cured at room temperature. GEO-C is prepared using a blend of ground granulated blast furnace slag (GGSG) and F Class Fly Ash, and the replacement is ranged from 0% to 100% of binder material, to find the optimum dosage of binder material. Sodium Hydroxide (NaOH) and Sodium Silicate (Na2SiO3) which are alkaline in nature, used primarily as an activating agent for the polymerization process of geopolymer. Experiments were conducted on samples by fixing the NaOH concentration as 14M for optimum strength and the alkaline activator ratio is fixed as one. Mechanical properties of GEO-C like compressive strength, rupture modulus (i.e. flexural strength), and split tensile strength were evaluated at the ages 7, 14, 28 days. From the results, it is observed that with the addition of GGSG in the blend the compressive, flexural, and tensile strength increase but there is a drastic reduction in the workability of the mixture.

Author(s):  
Ashita Singh ◽  
Sudhir Singh Bhadauria ◽  
Manish Mudgal ◽  
Suresh Singh Kushwah

Use of Ordinary Portland cement contributes to environmental deterioration by releasing enormous quantity of CO2.To reduce use of cement, this research focuses on preparation of solely ground granulated blast furnace slag based geopolymer binder, activated by a combination of sodium hydroxide and sodium metasilicate cured under ambient temperature at 27°C. Engineering properties of geopolymer binder are evaluated and compared with conventional cement to assess its suitability as a binder for making geopolymer concrete. Compressive strength, flexure strength and split tensile strength are determined for geopolymer concrete. Microstructural analysis of geopolymer is performed by XRD, FTIR, FESEM and EDAX tests. The concentration of alkali activators is optimized by trials in laboratory and maximum compressive, flexural and split tensile strength of 44.07 MPa, 5.60 MPa and 4.39 MPa respectively, is obtained for geopolymer concrete at 2M concentration of sodium hydroxide solution with ratio of sodium metasilicate to sodium hydroxide taken as 2.0


2015 ◽  
Vol 754-755 ◽  
pp. 406-412 ◽  
Author(s):  
Puput Risdanareni ◽  
Januarti Jaya Ekaputri ◽  
Mohd Mustafa Al Bakri Abdullah

This paper describes the effect of alkaline activator ratio (Na2SiO3/NaOH) to mechanical properties of geopolymer concrete. The mechanical properties of geopolymer concrete were assessed by setting time, split tensile strength and porosity. Fly ash was used as a cement substitute, and trass used as filler. While, Natrium hydroxide (NaOH) and Sodium Silicate (Na2SiO3) was applied as alkaline activator. In this study, NaOH concentration eight and ten molar with an alkaline activator ratio Na2SiO3/ NaOH by mass: 0.5, 1, 1.5, 2 and 2.5 were used. The test result showed that setting time, porosity and split tensile strength of geopolymer concrete were hardly influenced by NaOH concentration and the alkaline activator ratio. The alkaline activator ratio of Na2SiO3/NaOH has an optimum value at 2 and 2.5. Test result showed that the fastest setting time was 25 minute, the highest amount of closed porosity was 9.035 % and the highest split tensile strength was 2.86 MPa.


2021 ◽  
Author(s):  
Max Olsen ◽  
Ragni Hatlebakk ◽  
Chris Holcroft ◽  
Roar Egil Flatebø ◽  
Asif Hoq ◽  
...  

Abstract This paper reports the development and testing, of a Phosphate controlled dissolution glass composition used to strengthen the matrix of chalk whilst retaining the permeability of the rock, facilitating improved hydrocarbon recovery in unstable wells. Multiple versions of the glass solutions and different types of colloidal silica were extensively tested in the laboratory to determine injectability and reactivity with calcium carbonate rocks. The goal of the testing was to determine the best performing solution for use in a field trial in the Norwegian North Sea. The laboratory testing included filtration and core flood tests to determine the injectability of the solutions and post treatment permeability, and Brazilian strength tests to determine the tensile strength of the treated chalk cores. The filterability was tested through filter screen sizes ranging from 5 to 0.6 µm. Core flood testing was performed on 10 cm long chalk cores with 1.5 mD permeability. The glass solutions showed the best results in the filtration and core flood testing, achieving significantly greater invasion depth than any of the colloidal silica samples. The phosphate glass treated chalk cores maintained 70 to 100% of the original permeability while delivering a 3 to 5 fold tensile strength increase. The lab tests demonstrated the potential of a glass based treatment to strengthen chalk formations without impeding permeability.Based on the promising results from the lab tests, it was decided to trial the selected glass solution in a mature vertical proppant fractured well. The test confirmed that the glass solution could be pumped into the well, but the test failed pre-maturely after two months of varied production, and the trial will not be covered in this paper.However, due to the high value in being able to stabilize chalk in the field, the Operator is evaluating a new trial in a horizontal well, and learnings from the first trial will be used to inform further lab tests in the next phase. The glass solution used in this trial is being further developed to be used in other formation types, such as sand and non-calcium containing reservoirs.


This paper aims to investigate the influence of alkaline activators solution i.e, Na2SiO3 / NaOH on compressive strength of geopolymer concrete mixed with Ground Granulated Blast furnace slag (GGBS) for constant molarity 8 M. The ratio of alkali to binder ratio is taken as 0.5 and the ratio of Na2SiO3 / NaOH is 2.5. The geopolymer mix is based on pervious sutdies. As per Indian standard size moulds for the cube, cylinder and prism are cast, cured and tested.The specimens were tested for fresh concrete properties such as slump cone test and hardened properties such as compressive strength for cubes, split tensile strength for cylinders and flexural strength for prism different days of curing under ambient temperature. Also, a microstructural study is done by using Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) for the tested sample. It is found from the test results that, with the aid of alumino-silicate solution, early strength is achieved by geopolymer concrete within 7 days under ambient condition due to the presence of ground granulated slag.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
E. Rabiaa ◽  
R. A. S. Mohamed ◽  
W. H. Sofi ◽  
Taher A. Tawfik

This research investigates the simultaneous impact of two different types of steel fibers, nanometakaolin, and nanosilica on the mechanical properties of geopolymer concrete (GPC) mixes. To achieve this aim, different geopolymer concrete mixes were prepared. Firstly, with and without nanomaterials (nanosilica and nanometakaolin) of 0, 2%, 4%, 6%, and 8% from ground granulated blast furnace slag (GGBFS) were used. Secondly, steel fiber (hooked end and crimped) content of (0, 0.5%, 1, and 1.5%) was used. Thirdly, optimum values of nanomaterials with the optimum values of steel fiber were used. Crimped and hooked-end steel fibers were utilized with an aspect ratio of 60 and a length of 30 mm. Geopolymer mixes were manufactured by using a constant percentage of alkaline activator to binder proportion equal to 0.45 with GGBFS cured at ambient conditions. For alkaline activator, sodium hydroxide molar (NaOH) and sodium hydroxide solution (NaOH) were used according to a proportion (Na2SiO3/NaOH) of 2.33. The hardened concrete tests were performed through the usage of splitting tensile strength, flexural, and compressive experiments to determine the impact of steel fibers, nanometakaolin, and nanosilica individually and combined on performance of GPC specimens. The results illustrated that using a mix composed of the optimum steel fibers (1% content) accompanied by an optimum percentage of 6% nanometakaolin or 4% nanosilica demonstrated a significant enhancement in the mechanical properties of GPC specimens compared to all other mixtures. Besides, the impact of using nanomaterials individually was found to be predominant on compressive strength on GPC specimens especially with the usage of the optimum values. However, using nanomaterials individually compared to using the steel fibers individually was found to have approximately the same splitting tensile strength and flexural performance.


2016 ◽  
Vol 841 ◽  
pp. 1-6 ◽  
Author(s):  
Puput Risdanareni ◽  
Adjib Karjanto ◽  
Febriano Khakim

This paper describes the result of investigating volcanic ash of Mount Kelud as fly ash substitute material to produce geopolymer concrete. The test was held on geopolymer concrete blended with 0%, 25%, 50% and 100% fly ash replacement with volcanic ash. Natrium Hidroxide (NaOH) with concentration of 12 molar and Natrium Silicate (Na2SiO3) were used as alkaline activator. While alkali-activator ratio of 2 was used in this research. The physical properties was tested by porosity and setting time test, while split tensile strength presented to measure brittle caracteristic of geopolymer concrete. The result shown that increasing volcanic ash content in the mixture will increase setting time of geopolymer paste. On the other hand increasing volcanic ash content will reduce split tensile strength and porosity of geopolymer concrete. After all replacing fly ash with volcanic ash was suitable from 25% to 50% due to its optimum physical and mechanical properties.


Carbon ◽  
1998 ◽  
Vol 36 (9) ◽  
pp. 1327-1330 ◽  
Author(s):  
J. Mittal ◽  
H. Konno ◽  
M. Inagaki ◽  
O.P. Bahl

Cement manufacturing industries which emits about 7% of CO2 to the environment causing pollution. So, in order to avoid pollution problems there is a need to find an alternative binding material. Wastes like agricultural or industrial in the form of ash can be utilized as a substitute for cement. In this research work, Ground Granulated Blast-furnace Slag(GGBS) and Sugarcane Bagasse ash(SCBA) is used as a complete replacement to cement so as to form Geopolymer concrete(GPC). Two different SCBA sources which has high amount of silica content is considered for the partial replacement of GGBS in varying percentages like 5%, 10%, 15%, 20%, 25%, 30% to determine mechanical and microstructure properties. A 5M alkaline solutions of Sodium hydroxide and Sodium silicate is used. In this work, mechanical properties of GGBS-SCBA based GPC which includes compressive strength, split tensile strength, flexural strength and microstructure properties of SCBA samples by X-ray Fluorescence(XRF), Energy Dispersive spectroscopy(EDS), X-ray Diffractometer(XRD), Scanning Electronic Microscope(SEM) techniques are determined and analyzed on different GPC mix proportions.


The present study appraises the recitals of carboxylic acid- based admixture to increase concrete water tightness and self-sealing capacity of the cement and geopolymer concrete. Outcomes of the previous studies in particular, adding 1% by cement mass of the carboxylic polymer reasons for reduction in the water dispersion under pressure of 7-day wet cured concrete by 50% associated to that of the conforming reference concrete. At 7 days, M4 mix compressive strength is about 43.5% less than M3 mix. The compressive strength of M4 increases and is about 37.6% less than M3 mix at 28 days of curing. At 7 days, M4 mix split tensile strength is about 17.5% less than M3 mix (cement concrete with 0.45 w/c ratio). The split tensile strength of M4 declines and is about 42.3% less than M3 mix at 28 days of curing. The strength of the geopolymer concrete tends to increase as the time period increases due to the presence of fly ash in it. So it is expected that geopolymer concrete will give more strength than cement concrete in long term with the presence of carboxylic acid


2018 ◽  
Vol 7 (1) ◽  
pp. 19-23
Author(s):  
S. Thirupathiraj .

Cement is the core content for the concrete mix. Manufacturing of cement causes CO2 emission which leads to the pollution, health and environmental problems like global warming to control over the adverse effect we can prefer geopolymer concrete which is not a cement concrete. Factory wastes such as fly ash, ground granulated blast furnace slag (GGBS), silica fume and Metakaolin can be used as alternate for cement. This study mainly focus on the ratio of fly ash and ground granulated blast furnace slag (GGBS) for optimum levels which nearly matches the cement concrete properties. This study involves the various tests like slump flow, compression testing, split tensile strength and flexural strength of self-compacting geopolymer concrete. Self-compacting concrete is a highly flowable concrete that spreads into the form without the need of mechanical vibration. Self-compacting concrete is a non-segregating concrete that is placed by means of its own weight. The advantages include improved constructability, Labour reduction, bond to steel, Flow into complex forms, reduced equipment wear etc. The aim of this study is to achieve an optimum self-compacting concrete geopolymer concrete mix proportion using fly ash and ground granulated blast furnace slag (GGBS). Then the study will be further extended by investigating the durability properties of self-compacting geopolymer concrete.


Sign in / Sign up

Export Citation Format

Share Document