scholarly journals THE PAYNE EFFECT: PRIMARILY POLYMER-RELATED OR FILLER-RELATED PHENOMENON?

2019 ◽  
Vol 92 (4) ◽  
pp. 599-611 ◽  
Author(s):  
Nadhatai Warasitthinon ◽  
Anne-Caroline Genix ◽  
Michael Sztucki ◽  
Julian Oberdisse ◽  
Christopher G. Robertson

ABSTRACT The hysteretic softening at small dynamic strains (Payne effect)—related to the rolling resistance and viscoelastic losses of tires—was studied as a function of particle size, filler volume fraction, and temperature for carbon black (CB) reinforced uncrosslinked styrene–butadiene rubber (SBR) and a paste-like material composed of CB-filled paraffin oil. The low-strain limit for dynamic storage modulus was found to be remarkably similar for CB-filled oil and the CB-filled SBR. Small-angle X-ray scattering (SAXS) measurements on the simple composites and detailed data analysis confirmed that the aggregate structures and nature of filler branching/networking of carbon black were virtually identical within oil compared to the high molecular weight polymer matrix. The combined dynamic rheology and SAXS results provide clear evidence that the deformation-induced breaking (unjamming) of the filler network—characterized by filler–filler contacts that are percolated throughout the material—is the main cause for the Payne effect. However, the polymer matrix does play a secondary role as demonstrated by a reduction in Payne effect magnitude with increasing temperature for the CB-reinforced rubber, which was not observed to a significant extent for the oil–CB system.

2020 ◽  
Vol 93 (4) ◽  
pp. 652-671 ◽  
Author(s):  
S. Sattayanurak ◽  
K. Sahakaro ◽  
W. Kaewsakul ◽  
W. K. Dierkes ◽  
L. A. E. M. Reuvekamp ◽  
...  

ABSTRACT To improve the properties of silica-reinforced truck tire tread compounds, especially abrasion resistance, the effect of vinyl contents in butadiene rubber (BR) or solution styrene–butadiene rubber (SSBR) as secondary polymers in silica-filled natural rubber (NR) compounds at a ratio of 80/20 phr is investigated in the first part of this study. By increasing the levels of vinyl contents in BR in combination with NR, a better Payne effect, 300% modulus, reinforcement index, and tan delta at −20 and 0 ° C are obtained, whereas the tensile strength, elongation at break, and DIN abrasion resistance index decrease with increasing vinyl contents. Higher vinyl contents in SSBR result in improvements in Payne effect, 300% modulus, tan delta at −20 and 0 °C but only a small improvement in DIN abrasion resistance index. Combinations of secondary fillers and polymers in silica-filled NR are covered in the second part of present study. Silica/carbon black–filled NR/BR and NR/SSBR, respectively, and silica/organoclay–filled NR/BR and NR/SSBR show positive effects on scorch time and optimum cure time, with only slight changes in Payne effect, tensile properties, tan delta at −20 and 0 ° C and DIN abrasion resistance as compared with compounds with carbon black N134. The use of organoclay results in an enhanced Payne effect and tan delta at 60 °C, indicative of reduced filler–filler networking and consequently a lower rolling resistance of tire tread compounds as compared with the compound without organoclay. The specific combination of a small amount of organoclay replacing the same amount of silica, together with some of the NR replaced by high-vinyl BR, promises a substantial overall boost in wet and ice traction, abrasion, and wear resistance as compared with straight NR/silica tire treads. This new observation helps to overcome one of the main shortcomings of NR/silica compounds: their generally low wear resistance.


2020 ◽  
Vol 39 (1) ◽  
pp. 81-90
Author(s):  
An Zhao ◽  
Xuan-Yu Shi ◽  
Shi-Hao Sun ◽  
Hai-Mo Zhang ◽  
Min Zuo ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1527
Author(s):  
Liwei Li ◽  
Haijun Ji ◽  
Hui Yang ◽  
Liqun Zhang ◽  
Xinxin Zhou ◽  
...  

In response to increasingly stringent requirements for the sustainability and environmental friendliness of the rubber industry, the application and development of bio-based elastomers have received extensive attention. In this work, we prepared a new type of bio-based elastomer poly(dibutyl itaconate-butadiene) copolymer (PDBIB) nanocomposite using carbon black and non-petroleum-based silica with a coupling agent. Using dynamic thermodynamic analysis (DMTA) and scanning electron microscope (SEM), we studied the effects of feed ratio on dynamic mechanical properties, micro morphology, and filler dispersion of PDBIB composites. Among them, silica-reinforced PDBIB60 (weight ratio of dibutyl itaconate to butadiene 40/60) and carbon black-reinforced PDBIB70 (weight ratio of dibutyl itaconate to butadiene 30/70) both showed excellent performance, such as tensile strength higher than 18 MPa and an elongation break higher than 400%. Compared with the widely used ESBR, the results showed that PDBIB had better rolling resistance and heat generation than ESBR. In addition, considering the development of green tires, we compared it with the solution polymerized styrene–butadiene rubber with better comprehensive performance, and analyzed the advantages of PDBIB and the areas to be improved. In summary, PDBIB prepared from bio-based monomers had superior performance and is of great significance for achieving sustainable development, providing a direction for the development of high-performance green tire and holding great potential to replace petroleum-derived elastomers.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Pongdhorn Sae-oui ◽  
Krisda Suchiva ◽  
Chakrit Sirisinha ◽  
Wenussarin Intiya ◽  
Pram Yodjun ◽  
...  

This work aimed at investigating the effects of blend ratio between styrene butadiene rubber (SBR) and butadiene rubber (BR) and SBR type (E-SBR and S-SBR) on properties of SBR/BR tire tread compounds. Influences of these parameters on properties of the tread compounds reinforced by 80 parts per hundred rubber (phr) of carbon black (CB) and silica were also compared. Results reveal that hardness, strengths, and wet grip efficiency were impaired whereas rolling resistance was improved with increasing BR proportion. Surprisingly, the presence of BR imparted poorer abrasion resistance in most systems, except for the CB-filled E-SBR system in which an enhanced abrasion resistance was observed. Obviously, S-SBR gave superior properties (tire performance) compared to E-SBR, particularly obvious in the silica-filled system. Compared with CB, silica gave comparable strengths, better wet grip efficiency, and lower rolling resistance. Carbon black, however, offered greater abrasion resistance than silica.


2011 ◽  
Vol 39 (3) ◽  
pp. 210-222 ◽  
Author(s):  
S. Ghosh ◽  
R.A. Sengupta ◽  
G. Heinrich

Abstract Tyre rolling resistance is a key performance index in the tyre industry that addresses the environmental concern. Reduction of tyre rolling resistance is a major challenge so as to lower the fuel consumption, which could be achieved by changing both design as well as compound formulation. In this paper, rolling resistance of 205/60R15 as well as 155/70R14 passenger car radial tyre with nanocomposite based tread compounds were evaluated using finite element (FE) analysis. The energy dissipation in the tyre was evaluated using the product of elastic strain energy and the loss tangent of materials through post processing using a rolling resistance code. The elastic strain energy was obtained through steady state rolling simulation of tyre using Abaqus software and the loss tangent was measured in the laboratory by viscoanalyzer. A good correlation of rolling resistance was observed between simulation and experimental results. Nanocomposites used in this study were prepared based on solution styrene butadiene rubber and polybutadiene rubber blends with either organoclay and carbon black or organoclay and silica dual fillers. Carboxylated nitrile rubber, a polar rubber, was used as compatibilizer to facilitate the clay dispersion in rubber matrix. Compared to general carbon black or silica tread compounds, substantial improvement of rolling resistance was predicted by FE simulation with nanocomposite based tread compounds containing dual fillers organoclay-carbon black or organoclay-silica.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
LiHong Huang ◽  
Xiaoxiang Yang ◽  
Jianhong Gao

Via cyclic loading and unloading tests of natural/styrene-butadiene rubber (NSBR) blends at room temperature, the effects of the stretching, rate, temperature, and volume fraction of carbon black in the filled rubber on a permanent set (residual strain) were studied. The results showed that increasing the stretching, rate, and volume fraction of carbon black and reducing the temperature yielded greater residual strain. The uniaxial tensile behaviors of composites with the Mullins effect and residual strain were simulated using the ABAQUS software according to the aforementioned data. An Ogden-type constitutive model was derived, and the theory of pseudo-elasticity proposed by Ogden and Roxburgh was used in the model. It was found that the theory of pseudo-elasticity and the Ogden constitutive model are applicable to this composite, and if combined with plastic deformation, the models are more accurate for calculating the residual strain after unloading.


2015 ◽  
Vol 88 (4) ◽  
pp. 676-689 ◽  
Author(s):  
Wengjiang Feng ◽  
Zhenghai Tang ◽  
Peijin Weng ◽  
Baochun Guo

ABSTRACT The use of silica to partially replace carbon black is a common practice in the fabrication of “green tires.” Although some degree of consensus has been approached concerning the improved performance conferred by silica substitution, such as the improved dispersion of carbon black, a quantitative understanding of the relationship between filler networking and the performance of rubber composites has not been established. Thus, an investigation focusing on filler network structure and the correlation between the network structure and the reinforcement of rubber composites was conducted. We prepared solution-polymerized styrene–butadiene rubber (SSBR) reinforced by carbon black and carbon black/silica in different ratios. To exclude as much of the effect from changed crosslinking, and figure out how filler blending influences filler dispersion and filler network structure, the silane generally used in the tire industry was not adopted. The quantitative predictor, the mass fractal dimension df, was derived from the Kraus model and the Huber–Vilgis model. We found that when the amount of substituted silica increases, the filler cluster branching decreases, accompanied by increased reinforcement efficiency. The depressed filler networking induced by silica substitution at an appropriate proportion leads to improved dynamic properties, including lower rolling resistance and better wet skid. When the silica proportion in the filler is too high, severe filler networking is observed, resulting in decreased reinforcing efficiency and impaired dynamic properties.


2015 ◽  
Vol 1134 ◽  
pp. 131-137 ◽  
Author(s):  
Mohd Ismail Rifdi Rizuan ◽  
Mohammad Azizol Abdul Wahab ◽  
Ahmad Zafir Romli

The aim of this study is to investigate the effect of different carbon black structures towards heat build-up measurements and its dynamic properties such as tangent delta, loss modulus and storage modulus on the industrial rubber compounds containing Natural Rubber (NR) and Styrene Butadiene Rubber (SBR). Different carbon black structures were used and characterised with respect to their rheological and physical properties. Heat Build-up test is a testing procedure which is used to measure the rate of heat generated by the rubber vulcanisates when subjected to rapidly oscillating compressive stresses or strain under controlled conditions. It was found that NR compound containing low and high carbon black structures; N375 and N339 produced lower heat generation compared to NR/SBR blends that filled with the same type of carbon black fillers. It shows that NR with low and high carbon black structures exhibits low heat build-up (surface and intrinsic) with a balance of good traction and low rolling resistance for application in tyre.


2018 ◽  
Vol 72 (5) ◽  
pp. 293-303
Author(s):  
Dejan Kojic ◽  
Nada Lazic ◽  
Jaroslava Budinski-Simendic ◽  
Milena Spirkova ◽  
Pero Dugic ◽  
...  

Reinforcing of elastomers by the addition of various nanofillers has led to significant improvements in elastomer properties, and therefore, to the increase of potentials for use as suitable materials for special applications. The aim of this study was to investigate the effects of combinations of two active fillers (carbon black and synthesized silica (50/0; 35/15; 25/25; 15/35; 0/50; phr)) on the morphology, curing, as well as thermal, dynamic-mechanical and mechanical properties of nanocomposites based on the styrene-butadiene rubber as the network precursor. Based on SEM results, the largest agglomerates were observed in the structure of the nanocomposite containing 25 phr of carbon black and 25 phr of SiO2. Determination of curing characteristics indicated that the minimum torque at 100, 150 and 160?C had higher magnitudes for the compounds with silica filler, which is in accordance with the tendency of SiO2 to form filler-filler interactions. Values of the scorch time and the optimal time of crosslinking increased by increasing the silica phr content in the fillers mixture. It could be thus supposed that the fraction of occluded and trapped chains in the structure of elastomer reinforced by SiO2 is higher due to the almost 2-fold higher value of the silica NDBP number as compared to the NDBP number of carbon black particles. On the basis of MDSC results, it was assessed that the addition of combined active fillers had negligible effects on the glass transition temperature, registered at about -47?C for all tested samples. The obtained DMA data, concerning storage moduli in the temperature range from -20 to 0?C, (characteristic for "Payne" effect) are very significant for predictions of the properties of the tyre tread such as the slip resistance on the road on ice and in the wet conditions. The increase of silica content in the combined filler induced a decrease of the dynamic mechanical loss factor of prepared nanocomposites in the temperature range from 40 to 80?C. The obtained results are very important for the structuring of elastomeric materials aimed for production of tyres with reduced rolling resistance and fuel consumption. The elastomer containing the highest content of carbon black showed the highest value of the tensile strength (21.8 MPa). The abrasion resistance of the synthesized nanocomposites increased as the silica content was reduced in the combined fillers.


Sign in / Sign up

Export Citation Format

Share Document