scholarly journals RANCANG BANGUN ALAT UJI LAJU DAN WAKTU PEMBAKARAN PLASTIK PADA ARAH HORIZONTAL

Teknika ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 73-77
Author(s):  
Farit Ardiyanto ◽  
Kaleb Priyanto ◽  
Dany Faishal Afif
Keyword(s):  

Penggunaan material plastik dan komposit polimer semakin massif di berbagai aplikasi khususnya  industri otomotif. Berbagai rekayasa dan penelitian telah mampu menghasilkan karakteristik mekanis dan fisis material plastik yang mampu menggantikan material logam. Namun demikian, penggunan plastik pada aplikasi dengan resiko kebakaran perlu melalui pengujian hambat bakar. Pengujian tersebut menghasilkan tingkat kemampuan material menghambat laju pembakaran serta penundaan waktu penyalaan api. Metode pengujian tersebut salah satunya diatur di dalam standar UL 94 AVH. Untuk mendapatkan hasil yang akurat serta memberikan kemudahan dalam mengoperasikan, maka perlu dibuat sebuah alat uji laju dan waktu pembakaran plastik pada arah horizontal. Artikel ini membahas proses hingga unjuk kerja alat dengan tetap berdasar pada  standar yang diacu. Proses manufaktur alat uji dimulai dengan observasi, pembuatan desain alat dan skematik pemantik otomatis, machining komponen, wiring kelistrikan, perpipaan dukungan gas, assembly, dan finishing. Hasil pengujian menunjukkan bahwa alat uji laju pembakaran ini dapat digunakan secara akurat dan menunjukkan perbedaan laju pembakaran setiap specimen uji dengan material dasar yang berbeda.

2019 ◽  
Vol 37 (2) ◽  
pp. 137-154 ◽  
Author(s):  
Xi Cheng ◽  
Jianming Wu ◽  
Yulin Li ◽  
Chenguang Yao ◽  
Guisheng Yang

Aluminum hypophosphite combined with melamine cyanurate and poly(phenylene oxide) was applied to flame-retard TPE-S system (blends of SEBS and polyolefin). The flame-retardant properties of the TPE-S/AHP/MCA/PPO were investigated by LOI and vertical burning test (UL-94). The results indicated that TPE-S containing 16 wt% AHP, 20 wt% MCA, and 10 wt% PPO reached a V-0 rating in the UL-94 test, and its LOI value was 28.2%. It performed well in the cone calorimeter (reduction in peak heat release rate from 2001 to 494 kW m−2). Thermogravimetric-Fourier transform infrared spectroscopy tests showed that AHP and MCA acted in gaseous phase, while AHP and PPO helped to form char residue. The SEM graphs demonstrated that continuous and compact films cover bubbles of the char layer in TPE-S/AHP/MCA/PPO. The proposed flame-retardant mechanisms of such systems were summarized.


2011 ◽  
Vol 197-198 ◽  
pp. 1346-1349 ◽  
Author(s):  
Fa Chao Wu

Bis(2,6,7-trioxa-l-phosphabicyclo[2.2.2]octane-4-methanol) melaminium salt (Melabis) and microcapsules of Melabis with melamine resin shell as flame retardants (FR), respectively, were synthesized. Their structures were characterized by NMR, IR, SEM, TG and element analysis. 20% weight of microcapsules was doped into epoxy resins (EP) to get 28.5 % of LOI and UL 94 V-0. The heat and smoke release of EP containing microcapsules was valued by cone calorimeter.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 13 ◽  
Author(s):  
Rosica Mincheva ◽  
Hazar Guemiza ◽  
Chaimaa Hidan ◽  
Sébastien Moins ◽  
Olivier Coulembier ◽  
...  

In this study, a highly efficient flame-retardant bioplastic poly(lactide) was developed by covalently incorporating flame-retardant DOPO, that is, 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide. To that end, a three-step strategy that combines the catalyzed ring-opening polymerization (ROP) of L,L-lactide (L,L-LA) in bulk from a pre-synthesized DOPO-diamine initiator, followed by bulk chain-coupling reaction by reactive extrusion of the so-obtained phosphorylated polylactide (PLA) oligomers (DOPO-PLA) with hexamethylene diisocyanate (HDI), is described. The flame retardancy of the phosphorylated PLA (DOPO-PLA-PU) was investigated by mass loss cone calorimetry and UL-94 tests. As compared with a commercially available PLA matrix, phosphorylated PLA shows superior flame-retardant properties, that is, (i) significant reduction of both the peak of heat release rate (pHRR) and total heat release (THR) by 35% and 36%, respectively, and (ii) V0 classification at UL-94 test. Comparisons between simple physical DOPO-diamine/PLA blends and a DOPO-PLA-PU material were also performed. The results evidenced the superior flame-retardant behavior of phosphorylated PLA obtained by a reactive pathway.


2021 ◽  
Vol 19 (1) ◽  
pp. 904-915
Author(s):  
Merve Kahraman ◽  
Nilgün Kızılcan ◽  
Mehmet Ali Oral

Abstract In many plastic applications, improvement of the flame retardancy is a very significant topic. Polypropylene (PP) is used in many applications such as housing industry due to its cost performance efficiency. Enhancement of flame retardancy properties of PP is necessary in many applications. In this study, the investigation focuses on the synergistic effect of mica mineral and IFR in enhancing the flame retardancy properties of PP in order to achieve cost competitive solution, so as to provide that different/various ratios of IFR and mica mineral were added into PP to compose 30 wt% of the total mass of the polymeric compounds. The synergistic effect of mica mineral with IFR in PP was investigated by limiting oxygen index (LOI), glow wire test (GWT), UL-94 test, thermal gravimetric analyses (TGA), and mechanical tests. The results from LOI, UL 94, and GWT tests indicated that mica added to PP/IFR compound has a synergistic flame retardancy effects with the IFR system. When the content of mica was 6 wt%, LOI value of PP compound reaches to 34.9% and becomes V-0 rating (3.2 mm) in UL 94 flammability tests and compounds pass GWT tests both at 750 and 850°C.


2013 ◽  
Vol 749 ◽  
pp. 65-70
Author(s):  
Xiao Yan Li ◽  
Yan Chun Li ◽  
Chen Jie Shi ◽  
Si Si Cai ◽  
Xia Wang ◽  
...  

A kind of intumescent flame retardant (IFR) were used for flame retarding of oil-extended hydrogenated styrene-butylenes-styrene (O-SEBS). The samples were systemically characterized by limited oxygen index (LOI), vertical burning test (UL-94), and scanning electron microscopy (SEM); Thermogravimetric (TG) analysis. The results showed that the IFR retardant can promote residual chars with multi-micro holes on the surface of SEBS to inhibit flame; with 45% IFR content, the LOI is 28.3 and flame retardant level is UL-94 classification of V-0, with no dripping. The morphological structures observed by SEM demonstrated that higher IFR content promote to form larger and compact films cover on bubbles of the intumescent char layer. The TG data revealed that the IFR could change the degradation behavior of the O-SEBS, enhance the thermal stability and increase the char residue, The tensile strength of all the O-SEBS/IFR blends had the tensile strength of more than 4MPa and the elongation of more than 850%.


2018 ◽  
Vol 31 (1) ◽  
pp. 86-96 ◽  
Author(s):  
R Vini ◽  
S Thenmozhi ◽  
SC Murugavel

In this study, azomethine polyphosphonates were synthesized by solution polycondensation of phenylphosphonic dichloride with various azomethine diols such as [4-(4-hydroxy phenyl) iminomethyl] phenol, [(4-(4-hydroxy-3-methoxy phenyl) iminomethyl)] phenol and [4-(4-hydroxy-3-ethoxy phenyl) iminomethyl] phenol using triethylamine catalyst at ambient temperature. The structure of the synthesized polymers was confirmed by Fourier transform infrared and 1H-, 13C- and 31P- nuclear magnetic resonance spectroscopic techniques. Thermal properties of the polymers were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry under nitrogen atmosphere. The TGA data showed that the synthesized polyphosphonates produce high char yield at 600°C due to the presence of phosphorous atom in the polymer chain and hence have good flame-retardant properties. One of the synthesized polyphosphonate was blended with commercial diglycidyl ether of bisphenol-A (DGEBA) resin in various weight percentage and cured with commercial curing agent triethylene tetramine (TETA). The polyphosphonates-blended epoxy thermosets have tensile strength in the range of 5–41 MPa and the percentage of elongation at breaks was 4–18. It was found that the incorporation of polyphosphonates into epoxy thermoset decreased the tensile strength from 41 MPa to 5 MPa, whereas the elongation at break value increased with increase in the weight percentage of polyphosphonate. The influence of polyphosphonates on the flame retardancy of blended thermosets was examined by limiting oxygen index (LOI) and vertical burning (UL-94) tests and found that the polymer samples achieved an increased UL-94 rating and the LOI values were in the range of 24–26. Broido and Horowitz–Metzger methods have been used to study the thermal degradation kinetic parameters.


2018 ◽  
Vol 42 (4) ◽  
pp. 436-446 ◽  
Author(s):  
Yong Wang ◽  
Wendong Kang ◽  
Xiaoyu Zhang ◽  
Chao Chen ◽  
Peipei Sun ◽  
...  
Keyword(s):  

2017 ◽  
Vol 44 (1) ◽  
pp. 1-8
Author(s):  
K. Lehmann ◽  
A. Nawracala

The following article discusses the use of novel compounds from the Tegosil series which are intended to significantly increase the thermal conductivity of HCR- and even LSR-based silicone elastomers or to provide a simple way of improving their flame retardant properties by adding these compounds. Heat transfer characteristics from hot disc testing are presented and the reduced burn time in the UL 94 test demonstrates the improved flame resistance of the resulting elastomer formulations.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1062 ◽  
Author(s):  
Junlei Chen ◽  
Jihui Wang ◽  
Aiqing Ni ◽  
Hongda Chen ◽  
Penglong Shen

In this work, a novel phosphorous–nitrogen based charring agent named poly(1,3-diaminopropane-1,3,5-triazine-o-bicyclic pentaerythritol phosphate) (PDTBP) was synthesized and used to improve the flame retardancy of high-density polyethylene (HDPE) together with ammonium polyphosphate (APP). The results of Fourier transform infrared spectroscopy (FTIR) and 13C solid-state nuclear magnetic resonance (NMR) showed that PDTBP was successfully synthesized. Compared with the traditional intumescent flame retardant (IFR) system contained APP and pentaerythritol (PER), the novel IFR system (APP/PDTBP, weight ratio of 2:1) could significantly promote the flame retardancy, water resistance, and thermal stability of HDPE. The HDPE/APP/PDTBP composites (PE3) could achieve a UL-94 V-0 rating with LOI value of 30.8%, and had a lower migration percentage (2.2%). However, the HDPE/APP/PER composites (PE5) had the highest migration percentage (4.7%), lower LOI value of 23.9%, and could only achieve a UL-94 V-1 rating. Besides, the peak of heat release rate (PHRR), total heat release (THR), and fire hazard value of PE3 were markedly decreased compared to PE5. PE3 had higher tensile strength and flexural strength of 16.27 ± 0.42 MPa and 32.03 ± 0.59 MPa, respectively. Furthermore, the possible flame-retardant mechanism of the APP/PDTBP IFR system indicated that compact and continuous intumescent char layer would be formed during burning, thus inhibiting the degradation of substrate material and improving the thermal stability of HDPE.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1115 ◽  
Author(s):  
Agnieszka Przystas ◽  
Milijana Jovic ◽  
Khalifah Salmeia ◽  
Daniel Rentsch ◽  
Laurent Ferry ◽  
...  

The role of various additives (emulsifier, anti-dripping agent) and formulation procedures (pre-dispersion of solid additives in polyol via milling) which influence the flame retardancy of 6,6′-[ethan-1,2-diylbis(azandiyl)]bis(6H-dibenzo[c,e][1,2]oxaphosphin-6-oxid) (EDA-DOPO) containing flexible polyurethane foams has been investigated in this work. For comparison, the flame retardancy of two additional structurally-analogous bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-based compounds, i.e., ethanolamine-DOPO (ETA-DOPO) and ethylene glycol-DOPO (EG-DOPO) were also evaluated together with EDA-DOPO in flexible PU foams of various formulations. The flame retardancy of these three bridged-DOPO compounds depends on the type of PU formulation. For certain PU formulations containing EDA-DOPO, lower fire performance was observed. Addition of emulsifier and polytetrafluoroethylene (PTFE) to these PU formulations influenced positively the flame retardancy of EDA-DOPO/PU foams. In addition, dispersion of EDA-DOPO and PTFE via milling in polyol improved the flame retardancy of the PU foams. Mechanistic studies performed using a microscale combustion calorimeter (MCC) and its coupling to FTIR showed no difference in the combustion efficiency of the bridged-DOPO compounds in PU foams. From MCC experiments it can be concluded that these bridged-DOPO compounds and their decomposition products may work primarily in the gas phase as flame inhibitors. The physiochemical behavior of additives in PU formulation responsible for the improvement in the flame retardancy of PU foams was further investigated by studying the dripping behavior of the PU foams in the UL 94 HB test. A high-speed camera was used to study the dripping behavior in the UL 94 HB test and results indicate a considerable reduction of the total number of melt drips and flaming drips for the flame retardant formulations. This reduction in melt drips and flaming drips during the UL 94 HB tests help PU foams achieve higher fire classification.


Sign in / Sign up

Export Citation Format

Share Document