scholarly journals THE EXTRACT OF PUMPKIN SEEDS AS A CORROSION INHIBITOR OF MILD STEEL ALLOY IN ACIDIC SOLUTION

2020 ◽  
Vol 17 (35) ◽  
pp. 181-191
Author(s):  
Ekhlas Qanber JASIM ◽  
Erfan A. ALASADI ◽  
Munther Abduljaleel MOHAMMAD-ALI

The problem of corrosion in factories and vital installations remains one of the most important obstacles that delay the progress of production and the increasing of its quantity. To solve the problem of corrosion, many inorganic and organic inhibitors have been used. Recently, inhibitors made from plant extracts, cheaper and environmentally friendly, were used. The inhibition of pumpkin seed extract on the corrosion mild steel alloy in the acidic medium was investigated using spectroscopy of the electrochemical impedance, Electrochemical technique and mass losing method with a static environmental aqueous acidic solution. Effect of inhibitor concentrations (10-50 mg/L) and immersion time (1–5 h) was studied on the inhibition efficiency (η%) of the extract on Mild Steel (MS) immersed in a 0.5 M HCl solution. All techniques showed very good matching results in the inhibition coefficient values. The optimum η% was in the range 71-76% depending on the method used. The optimum time was 5 hours. Tafel curves results showed a clear view of the extract behavior, which acts as a mixed-type inhibitor. Furthermore, the atomic force microscopy test was applied for studying surface morphology of alloy. From the foregoing, the pumpkin plant extract can be of great benefit in inhibiting corrosion in the industry.

2021 ◽  
Author(s):  
Petar Stanić ◽  
◽  
Nataša Vukićević ◽  
Vesna Cvetković ◽  
Miroslav Pavlović ◽  
...  

Four 2-thiohydantoin derivatives were synthesized and their corrosion inhibition properties on mild steel (MS) in 0.5M HCl solution was evaluated using usual gravimetric and electrochemical methods (weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS). Morphology of the metal surface was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The study has shown that these compounds provide good protection for mild steel against corrosion in the acidic medium.


2019 ◽  
Vol 27 (06) ◽  
pp. 1950165
Author(s):  
IMENE BENMAHAMMED ◽  
TAHAR DOUADI ◽  
SAIFI ISSAADI ◽  
DJAMEL DAOUD ◽  
SALAH CHAFAA

The study of the corrosion inhibition of mild steel in acid medium 1 M HCl by the Schiff base compounds named {4,4′-Bis(pyrrole-2-carboxaldehyde) diphenyl diimino sulfide (L1) and 4,4′-Bis(thiophene-2-carboxaldehyde) diphenyl diimino sulfide (L2)} was carried out using various techniques: weight loss measurements, polarization curves, electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The influence of the concentration, immersion time and temperature was examined and the mode of adsorption of these inhibitors on the surface of the metal was highlighted by assigning the appropriate isotherm. The experimental results indicate that these compounds are effective corrosion inhibitors and the inhibitory competence rises with increasing inhibitor concentration. The adsorption of these compounds on the mild steel surface obeys the isotherm of Langmuir. The correlation between the molecular structures and the inhibitory properties of the compounds studied was performed using the Density Functional Theory (DFT) method. Furthermore, molecular dynamics (MD) simulation has been taken into account. The results indicate that the adsorption energy of L1 was less than L2, which is in accordance with the experimentally determined inhibition effect.


2018 ◽  
Vol 778 ◽  
pp. 111-117 ◽  
Author(s):  
Zaeem Ur Rehman ◽  
Mohsin Ali Raza ◽  
Faizan Ali Ghauri ◽  
Rumasa Kanwal ◽  
Akhlaq Ahmad ◽  
...  

In this study graphene coatings were deposited on mild steel substrate using feasible and environmental friendly method. The successful synthesis of graphite oxide was carried by the modified Hummer’s method. Graphene oxide (GO) coatings were developed from GO/water suspension using electrophoretic deposition (EPD). The EPD parameters voltage and deposition time were varied to deposit uniform adherent coatings. The coatings were post heat treated at 200 °C in vacuum for 4h to assess the effect on coated samples. GO and GO-EPD coating morphology were characterized using Fourier transform infrared spectroscopy (FTIR), Atomic force microscopy (AFM) and Scanning electron microscopy (SEM). Linear polarization (LPR) and electrochemical impedance spectroscopy (EIS) tests were performed in saline solution to evaluate electrochemical response. Coatings were partially reduced due to removal of oxygen containing functional groups during EPD and post heat treatments. The GO post heat treated coating had better corrosion resistance ~2 times than that of bare mild steel and higher charge transfer resistance.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
T. Jebakumar Immanuel Edison ◽  
M. G. Sethuraman

The interfacial behavior of fluconazole on mild steel in 1 M HCl solution was studied by electrochemical methods, namely, polarization (Tafel Plot) and Electrochemical Impedance Spectroscopy (EIS). The surface morphology of mild steel in the presence and absence of fluconazole was studied by Atomic Force Microscopy (AFM). The results of the study showed that fluconazole reduced the corrosion rate in HCl acid solution by adsorbing on the surface of mild steel. Tafel results suggest that fluconazole behaves predominantly as an anodic inhibitor and shows greater inhibition efficiency (96%) at 0.30 mM. Thermodynamical parameters suggest that fluconazole is adsorbed on mild steel mainly by chemical mode. The EIS studies reveal the formation of a thin barrier film on mild steel surface. The AFM image of mild steel immersed in optimum concentration of fluconazole has confirmed the film formation on metal surface.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
R. Ganapathi Sundaram ◽  
G. Vengatesh ◽  
M. Sundaravadivelu

The effect of Nitroxoline, antibiotic drug, was tested as a corrosion inhibitor for mild steel (MS) in an acidic environment by chemical method (mass loss measurement) and electrochemical methods such as electrochemical impedance spectroscopy and potentiodynamic polarization. The surface morphology of mild steel was investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, and atomic force microscopy techniques. From the chemical and electrochemical methods, the resistance of corrosion was increased with the addition of Nitroxoline concentration. Tafel curves indicate that the pharmaceutically active compound is a cathodic type inhibitor. An adsorption of Nitroxoline on the surface of mild steel was obeyed by Langmuir isotherm. SEM, EDX, and AFM techniques prove the adsorption process. All the obtained results confirmed that the investigated compound Nitroxoline acts as a good inhibitor for the corrosion of mild steel in an acidic environment.


2019 ◽  
Vol 26 (06) ◽  
pp. 1850200 ◽  
Author(s):  
AKHIL SAXENA ◽  
DWARIKA PRASAD ◽  
RAJESH HALDHAR

The corrosion hindrance impact of Syzygium aromaticum fruit extract has been analyzed on mild steel (MS) corrosion in 0.5[Formula: see text]M H2SO4 by utilizing weight reduction estimations, potentiodynamic polarization estimations and electrochemical impedance spectroscopy (EIS) procedures. This Eugenol- and Eugenol-acetate-containing extract diminishes the corrosion rate of MS in acidic medium. The greatest corrosion restraint effectiveness was observed at 500[Formula: see text]mg/L inhibitor concentration in 0.5[Formula: see text]M H2SO4. The adsorption of Syzygium aromaticum extract on the surface of MS has been analyzed by utilizing atomic force microscopy (AFM), scanning electron microscopy (SEM) study and spectroscopic strategies.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1455
Author(s):  
Sabrina Patricia Rosoiu ◽  
Aida Ghiulnare Pantazi ◽  
Aurora Petica ◽  
Anca Cojocaru ◽  
Stefania Costovici ◽  
...  

The present work describes, for the first time, the electrodeposition of NiSn alloy/reduced graphene oxide composite coatings (NiSn-rGO) obtained under pulse current electrodeposition conditions from deep eutectic solvents (choline chloride: ethylene glycol eutectic mixtures) containing well-dispersed GO nanosheets. The successful incorporation of the carbon-based material into the metallic matrix has been confirmed by Raman spectroscopy and cross-section scanning electron microscopy (SEM). A decrease in the crystallite size of the coating was evidenced when graphene oxide was added to the electrolyte. Additionally, the topography and the electrical properties of the materials were investigated by atomic force microscopy (AFM). The corrosion behavior in 0.5 M NaCl solution was analyzed through potentiodynamic polarization and electrochemical impedance spectroscopy methods for different immersion periods, up to 336 h, showing a slightly better corrosion performance as compared to pure NiSn alloy.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
M. G. Tsoeunyane ◽  
M. E. Makhatha ◽  
O. A. Arotiba

The ecofriendly poly(butylene succinate) extended with 1,6-diisocynatohexane composted with L-histidine (PBSLH) polymer composite was synthesized by condensation polymerization. The polymer composite was characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM-EDX). The inhibition action of the polymer composite was investigated by conventional weight loss, potentiodynamic polarization, variable amplitude micro (VASP), and electrochemical impedance spectroscopy (EIS). The maximum corrosion inhibition efficiency of 78 % was obtained at concentration level of 600 ppm. The results revealed PBSLH as a mixed type corrosion inhibitor. The thermodynamic and kinetic parameters also revealed adsorption of PBSLH on to mild surface as exothermic and the adsorption was conformed to Langmuir model. The morphology of mild steel coupons was investigated by SEM and atomic force microscope (AFM) and the results showed PBSLH to have inhibited corrosion on mild steel in 1 M HCL.


Sign in / Sign up

Export Citation Format

Share Document