scholarly journals Pharmacogenetics of chlorpromazine and its role in the development of antipsychotic-induced parkinsonism

2021 ◽  
Vol 1 (1) ◽  
pp. 11-17
Author(s):  
E. E. Vaiman ◽  
M. A. Novitsky ◽  
R. F. Nasyrova

Antipsychotics (AP) is a group of psychotropic drugs for the treatment of mental disorders, in particular schizophrenia. In the mid-1950s, the first AP was synthesized (known as chlorpromazine (CPZ)). This drug has revolutionized the treatment of psychotic disorders. This drug, in addition to the antipsychotic effect, caused severe adverse drug reactions in patients, in particular from the neurological system, such as AP-induced extrapyramidal syndrome (EPS) — chlorpromazine-in-duced parkinsonism (CPZ-IP). CPZ-IP characterized by the occurrence of motor disorders. CPZ-IP is as a result of damage to the basal ganglia and subcortical-thalamic connections. Drug-induced EPS is subdivided into primary and secondary. Among the primary EPS, drug-IP is the most common (the leading form of secondary parkinsonism). Pharmacogenetic markers of CPZ safety are being actively studied. Some pharmacogenetic markers of therapy safety have been established: single nucleotide variants/polymorphisms of candidate genes for dopaminergic receptors D2 and D3 (DRD2 (rs1799732 (-141C Ins/Del)), DRD3 (rs6280 (Ser9Gly)), laforine phosphatase (EPM2A (rs1415744 (C/T)).

Author(s):  
Alexander Charney ◽  
Pamela Sklar

Schizophrenia and bipolar disorder are the classic psychotic disorders. Both diseases are strongly familial, but have proven recalcitrant to genetic methodologies for identifying the etiology until recently. There is now convincing genetic evidence that indicates a contribution of many DNA changes to the risk of becoming ill. For schizophrenia, there are large contributions of rare copy number variants and common single nucleotide variants, with an overall highly polygenic genetic architecture. For bipolar disorder, the role of copy number variation appears to be much less pronounced. Specific common single nucleotide polymorphisms are associated, and there is evidence for polygenicity. Several surprises have emerged from the genetic data that indicate there is significantly more molecular overlap in copy number variants between autism and schizophrenia, and in common variants between schizophrenia and bipolar disorder.


Author(s):  
Pamela Sklar

Schizophrenia and bipolar disorder are the classic psychotic disorders. Both diseases are strongly familial, but have proven recalcitrant to genetic methodologies for identifying the etiology until recently. The explosion of strong and convincing genetic evidence indicates a contribution of many DNA changes to the risk of becoming ill. For schizophrenia, there are large contributions of rare copy number variants and common single nucleotide variants, with an overall highly polygenic genetic architecture. There is a role for rare single nucleotide variation as well as de novo genetic variation being pointed to in new sequencing studies, but their overall contribution to risk is less clear. For bipolar disorder, the role of copy number variation appears to be much less pronounced. Specific common single nucleotide polymorphisms are associated, there is evidence for polygenicity and as yet no deep sequencing surveys have been published. Several intriguing biological pathways are suggested by these genetic findings related to microRNAs and calcium channel signaling. Several surprises have emerged from the genetic data that indicate there is significantly more molecular overlap in copy number variants between autism and schizophrenia, and in common variants between schizophrenia and bipolar disorder. Translating these results into biological and etiological understanding has not yet advanced, and will likely only do so when experimental methods are developed than can address the large numbers of genes and variants within them that, along with environmental and stochastic effects, result in the development of disease for a particular person.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 451
Author(s):  
Natalia A. Shnayder ◽  
Marina M. Petrova ◽  
Pavel A. Shesternya ◽  
Alina V. Savinova ◽  
Elena N. Bochanova ◽  
...  

Dabigatran, rivaroxaban, apixaban, and edoxaban are direct oral anticoagulants (DOACs) that are increasingly used worldwide. Taking into account their widespread use for the prevention of thromboembolism in cardiology, neurology, orthopedics, and coronavirus disease 2019 (COVID 19) as well as their different pharmacokinetics and pharmacogenetics dependence, it is critical to explore new opportunities for DOACs administration and predict their dosage when used as monotherapy or in combination with other drugs. In this review, we describe the details of the relative pharmacogenetics on the pharmacokinetics of DOACs as well as new data concerning the clinical characteristics that predetermine the needed dosage and the risk of adverse drug reactions (ADRs). The usefulness of genetic information before and shortly after the initiation of DOACs is also discussed. The reasons for particular attention to these issues are not only new genetic knowledge and genotyping possibilities, but also the risk of serious ADRs (primarily, gastrointestinal bleeding). Taking into account the effect of the carriership of single nucleotide variants (SNVs) of genes encoding biotransformation enzymes and DOACs metabolism, the use of these measures is important to predict changes in pharmacokinetics and the risk of ADRs in patients with a high risk of thromboembolism who receive anticoagulant therapy.


2020 ◽  
Vol 10 (3) ◽  
pp. 10-26
Author(s):  
E. E. Vaiman ◽  
N. A. Shnayder ◽  
N. G. Neznanov ◽  
R. F. Nasyrova

Introduction. Drug-induced dyskinesia is an iatrogenic undesirable side reaction from the extrapyramidal system that occurs during the administration of drugs, most often antipsychotics in patients with schizophrenia. At the end of the 20 th century, studies were conducted on the search for candidate genes and the carriage of single nucleotide variants of antipsychotics-induced tardive dyskinesia. Purpose of the study – to analyze research results reflecting candidate genes and their single nucleotide variants associated with antipsychotic-induced tardive dyskinesia. Materials and methods. We searched for full-text publications in Russian and English in the eLIBRARY, PubMed, Web of Science, Springer databases using keywords (tardive dyskinesia, drug-induced tardive dyskinesia, antipsychotics, antipsychotics, typical antipsychotics, atypical antipsychotics, genes, polymorphisms) and combined searches for words over the past decade. Results. The lecture discusses candidate genes encoding proteins/enzymes involved in the pharmacodynamics and pharmacokinetics of antipsychotics Conclusion. Timely identification of individual genetic characteristics of the patient can contribute to the development of diagnostic test systems and in the future selection of the safest and most effective antipsychotic therapy.


Author(s):  
Renata Parissi Buainain ◽  
Matheus Negri Boschiero ◽  
Bruno Camporeze ◽  
Paulo Henrique Pires de Aguiar ◽  
Fernando Augusto Lima Marson ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Nayoung Han ◽  
Jung Mi Oh ◽  
In-Wha Kim

For predicting phenotypes and executing precision medicine, combination analysis of single nucleotide variants (SNVs) genotyping with copy number variations (CNVs) is required. The aim of this study was to discover SNVs or common copy CNVs and examine the combined frequencies of SNVs and CNVs in pharmacogenes using the Korean genome and epidemiology study (KoGES), a consortium project. The genotypes (N = 72,299) and CNV data (N = 1000) were provided by the Korean National Institute of Health, Korea Centers for Disease Control and Prevention. The allele frequencies of SNVs, CNVs, and combined SNVs with CNVs were calculated and haplotype analysis was performed. CYP2D6 rs1065852 (c.100C>T, p.P34S) was the most common variant allele (48.23%). A total of 8454 haplotype blocks in 18 pharmacogenes were estimated. DMD ranked the highest in frequency for gene gain (64.52%), while TPMT ranked the highest in frequency for gene loss (51.80%). Copy number gain of CYP4F2 was observed in 22 subjects; 13 of those subjects were carriers with CYP4F2*3 gain. In the case of TPMT, approximately one-half of the participants (N = 308) had loss of the TPMT*1*1 diplotype. The frequencies of SNVs and CNVs in pharmacogenes were determined using the Korean cohort-based genome-wide association study.


2021 ◽  
Vol 22 (12) ◽  
pp. 6480
Author(s):  
Céline K. Stäuble ◽  
Markus L. Lampert ◽  
Thorsten Mikoteit ◽  
Martin Hatzinger ◽  
Kurt E. Hersberger ◽  
...  

We report two cases of patients who developed severe adverse drug reactions including persistent movement disorders, nausea, and vertigo during treatment with quetiapine at maximum daily doses ranging between 300 and 400 mg. The extensive hepatic metabolism of quetiapine is mainly attributed to cytochrome P450 3A4 (CYP3A4). However, there is recent evidence supporting the idea of CYP2D6 playing a role in the clearance of the quetiapine active metabolite norquetiapine. Interestingly, both patients we are reporting of are carriers of the CYP2D6*4 variant, predicting an intermediate metabolizer phenotype. Additionally, co-medication with a known CYP2D6 inhibitor and renal impairment might have further affected quetiapine pharmacokinetics. The herein reported cases could spark a discussion on the potential impact of a patient’s pharmacogenetic predisposition in the treatment with quetiapine. However, further studies are warranted to promote the adoption of pharmacogenetic testing for the prevention of drug-induced toxicities associated with quetiapine.


Author(s):  
Pauline Arnaud ◽  
Hélène Morel ◽  
Olivier Milleron ◽  
Laurent Gouya ◽  
Christine Francannet ◽  
...  

Abstract Purpose Individuals with mosaic pathogenic variants in the FBN1 gene are mainly described in the course of familial screening. In the literature, almost all these mosaic individuals are asymptomatic. In this study, we report the experience of our team on more than 5,000 Marfan syndrome (MFS) probands. Methods Next-generation sequencing (NGS) capture technology allowed us to identify five cases of MFS probands who harbored a mosaic pathogenic variant in the FBN1 gene. Results These five sporadic mosaic probands displayed classical features usually seen in Marfan syndrome. Combined with the results of the literature, these rare findings concerned both single-nucleotide variants and copy-number variations. Conclusion This underestimated finding should not be overlooked in the molecular diagnosis of MFS patients and warrants an adaptation of the parameters used in bioinformatics analyses. The five present cases of symptomatic MFS probands harboring a mosaic FBN1 pathogenic variant reinforce the fact that apparently asymptomatic mosaic parents should have a complete clinical examination and a regular cardiovascular follow-up. We advise that individuals with a typical MFS for whom no single-nucleotide pathogenic variant or exon deletion/duplication was identified should be tested by NGS capture panel with an adapted variant calling analysis.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Fatao Liu ◽  
Yongsheng Li ◽  
Dongjian Ying ◽  
Shimei Qiu ◽  
Yong He ◽  
...  

AbstractNeuroendocrine carcinoma (NEC) of the gallbladder (GB-NEC) is a rare but extremely malignant subtype of gallbladder cancer (GBC). The genetic and molecular signatures of GB-NEC are poorly understood; thus, molecular targeting is currently unavailable. In the present study, we applied whole-exome sequencing (WES) technology to detect gene mutations and predicted somatic single-nucleotide variants (SNVs) in 15 cases of GB-NEC and 22 cases of general GBC. In 15 GB-NECs, the C > T mutation was predominant among the 6 types of SNVs. TP53 showed the highest mutation frequency (73%, 11/15). Compared with neuroendocrine carcinomas of other organs, significantly mutated genes (SMGs) in GB-NECs were more similar to those in pulmonary large-cell neuroendocrine carcinomas (LCNECs), with driver roles for TP53 and RB1. In the COSMIC database of cancer-related genes, 211 genes were mutated. Strikingly, RB1 (4/15, 27%) and NAB2 (3/15, 20%) mutations were found specifically in GB-NECs; in contrast, mutations in 29 genes, including ERBB2 and ERBB3, were identified exclusively in GBC. Mutations in RB1 and NAB2 were significantly related to downregulation of the RB1 and NAB2 proteins, respectively, according to immunohistochemical (IHC) data (p values = 0.0453 and 0.0303). Clinically actionable genes indicated 23 mutated genes, including ALK, BRCA1, and BRCA2. In addition, potential somatic SNVs predicted by ISOWN and SomVarIUS constituted 6 primary COSMIC mutation signatures (1, 3, 30, 6, 7, and 13) in GB-NEC. Genes carrying somatic SNVs were enriched mainly in oncogenic signaling pathways involving the Notch, WNT, Hippo, and RTK-RAS pathways. In summary, we have systematically identified the mutation landscape of GB-NEC, and these findings may provide mechanistic insights into the specific pathogenesis of this deadly disease.


Sign in / Sign up

Export Citation Format

Share Document