scholarly journals Optimum gas tank locating in van vehicle – front and side crash analysis consideration for passenger safety

2021 ◽  
pp. 177-220
Author(s):  
Ali Kasaei ◽  
Nuraini Abdul Aziz ◽  
Aidin Delgoshaei ◽  
Suraya Mohd Tahir ◽  
Alireza Rezanoori

In this research, crash test results from CNG locating method optimization approach for crashworthiness and testing its safety are presented. The locating process is based on principal energy considerations inspired from the current design process in passenger vehicle design development. The potential of the vehicle concept to absorb kinetic energy can be estimated at the very beginning of the design process by the free crash lengths in the different areas of the vehicle and estimates of average forces required in the specific segment and parts of the car body at particular crash phases. Based on the basic principle of vehicle crash analysis using the finite element method, a passenger VAN finite element model was selected to simulate the front and side rear collision test of the VAN, therefore the LS-DYNA software is adopted to calculate the deformation of the car and the acceleration time history curves during the crashing process; the anti-impact capability of the vehicle is evaluated from this simulation. It is important to determine appropriate force distributions and the corresponding loads paths through the whole structure for all relevant crash load in dedicated crash test cases. The results demonstrate that the improvement of local structure and location for the required CNG tanks in safe locations in vehicle chassis can promote the crashworthiness of the car, but the further improvement needs a major change of the vehicle structure. The outcomes are interpreted by using LS-PREPOST to analyze the energy absorption characteristics during crash for different cases at a velocity of 50km/h the duration of 12ms. The result analysis was necessary to derive distinct deformation phases characteristic and following that, the essential crash elements are compared with and without CNG tanks installation in each crash case. At last, the conclusion determines the proposed tank locating model in the selected passenger VAN is within the safe range of crash analysis standards.

Author(s):  
Lý Hùng Anh ◽  
Nguyễn Phụ Thượng Lưu ◽  
Nguyễn Thiên Phú ◽  
Trần Đình Nhật

The experimental method used in a frontal crash of cars costs much time and expense. Therefore, numerical simulation in crashworthiness is widely applied in the world. The completed car models contain a lot of parts which provided complicated structure, especially the rear of car models do not contribute to behavior of frontal crash which usually evaluates injuries of pedestrian or motorcyclist. In order to save time and resources, a simplification of the car models for research simulations is essential with the goal of reducing approximately 50% of car model elements and nodes. This study aims to construct the finite element models of front structures of vehicle based on the original finite element models. Those new car models must be maintained important values such as mass and center of gravity position. By using condition boundaries, inertia moment is kept unchanged on new model. The original car models, which are provided by the National Crash Analysis Center (NCAC), validated by using results from experimental crash tests. The modified (simplistic) vehicle FE models are validated by comparing simulation results with experimental data and simulation results of the original vehicle finite element models. LS-Dyna software provides convenient tools and very strong to modify finite element model. There are six car models reconstructed in this research, including 1 Pick-up, 2 SUV and 3 Sedan. Because car models were not the main object to evaluate in a crash, energy and behavior of frontal part have the most important role. As a result, six simplified car models gave reasonable outcomes and reduced significantly the number of nodes and elements. Therefore, the simulation time is also reduced a lot. Simplified car models can be applied to the upcoming frontal simulations.


2021 ◽  
Author(s):  
Sinan Yıldırım ◽  
Ufuk Çoban ◽  
Mehmet Çevik

Suspension linkages are one of the fundamental structural elements in each vehicle since they connect the wheel carriers i.e. axles to the body of the vehicle. Moreover, the characteristics of suspension linkages within a suspension system can directly affect driving safety, comfort and economics. Beyond these, all these design criteria are bounded to the package space of the vehicle. In last decades, suspension linkages have been focused on in terms of design development and cost reduction. In this study, a control arm of a diesel public bus was taken into account in order to get the most cost-effective design while improving the strength within specified boundary conditions. Due to the change of the supplier, the control arm of a rigid axle was redesigned to find an economical and more durable solution. The new design was analyzed first by the finite element analysis software Ansys and the finite element model of the control arm was validated by physical tensile tests. The outputs of the study demonstrate that the new design geometry reduces the maximum Von Mises stress 15% while being within the elastic region of the material in use and having found an economical solution in terms of supplier’s criteria.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Halil Nohutcu

Historical structures are the values that are of great importance to that country, showing the roots of a country, and must be passed on from generation to generation. This study attempts to make a contribution to this goal. Seismic damage pattern estimation in a historical brick masonry minaret under different ground motion levels is investigated by using updated finite element models based on ambient vibration data in this study. Imaret Mosque which was built in 1481 AD is selected for an application. Surveying measurement and material tests were conducted to obtain a 3D solid model and mechanical properties of the components of the minaret. Firstly, the initial 3D finite element model of the minaret was analyzed and numerical dynamic characteristics of the minaret were obtained. Then, ambient vibration tests as well as operational modal analysis were implemented in order to obtain the experimental dynamic characteristics of the minaret. The initial finite element model of the minaret was updated by using the experimental dynamic results. Lastly, linear and nonlinear time-history analyses of the updated finite element model of the minaret were carried out using the acceleration records of two different level earthquakes that occurred in Turkey, in Afyon-Dinar (1995) and Çay-Sultandağı (2002). A concrete damage plasticity model is considered in the nonlinear analyses. The conducted analyses indicate that the compressive and tension stress results of the linear analyses are not as realistic as the nonlinear analysis results. According to the nonlinear analysis, the Çay-Sultandağı earthquake would inflict limited damage on the minaret, whereas the Dinar earthquake would damage some parts of the elements in the transition segment of the minaret.


2012 ◽  
Vol 535-537 ◽  
pp. 2012-2016
Author(s):  
Da Feng Gao ◽  
Peng Fei Li ◽  
Lei Wang

Based on the rich previous experimental data, the multi-storey ancient Chinese timber structure shangyou tower of palace style was studied. ANSYS10.0 software was used to establish the finite element models. One finite element model of large wooden frame was established by applying semi-rigid spring element to simulate the joint of mortise-tenon, tou-kung and the connection on column foot in the real wooden structure. The other finite element model of antique building corresponding to the finite element model above was established. The first 10 inherent frequencies and vibrations of the two models were obtained by the method of Block Lanczos with full transient analysis. The model displacement and acceleration time history curves were obtained by taking the two models subjected to El-Centro ground motion, Taft ground motion and Lanzhou artificial ground motion excitation. By the results analysis of the two models, it can be find that the vibration isolation performance of the ancient Chinese timber structure mainly manifests in the column foot, tenon and mortise connection and the tou-kung layer.


2019 ◽  
Vol 118 ◽  
pp. 02039
Author(s):  
Jin Xiao ◽  
Mingduo Huang ◽  
Qiguo Sun

The finite element model of suspended converter valve in an UHVDC transmission project with characteristics of flexible is constructed, and its vibration characteristics are simulated and analyzed firstly. The results show that this kind of suspended converter valve has obvious long-period character. Secondly, the long period phase of standard response spectrum in Code for Seismic Design of Buildings (GB50011-2010) is modified, and then the artificial seismic wave is synthesized employing the triangular series method. The result shows that this artificial seismic wave has long-period character. Finally, the time-history seismic dynamic simulation of the converter valve is done, and the seismic responses of the converter valve excited by three kinds of seismic wave with different period characters are compared and analyzed. The results show that the swing and stress of the suspended converter valve are larger under the long-period seismic wave synthesized in this paper. The quasi-resonance damage caused by long-period seismic wave should be concerned specially in the actual UHVDC transmission project.


2010 ◽  
Vol 163-167 ◽  
pp. 539-543
Author(s):  
De Sheng Zhang ◽  
Yuan Ying Li

The paper is based on the relatively large-span, thin thickness of the arched corrugated metal roof (ACMR) and the fact that the structure would suffer asymmetry swinging within the vertical plane and structure vibration under the effect of the wind and earthquake. A structure strengthening method called the arched corrugated metal roof with ring hoops (ACMRH) is adopted. With SAP2000, a finite element model is established, with type of w666-18m span, rise-span ratio 0.25, 1mm of thickness and condition of fixed support as its research object. The dynamic time history response is analyzed and compared with documents [1]. Result is shown as below. With the same earthquake wave on the structure added, the vertical and horizontal deflection displacement of the most unfavorable point of the arched corrugated metal roof with ring hoops is always less than that of the structure without ring hoops. The maximal decrement is about 28%. This result indicates the arched corrugated metal roof with ring hoops has a better effect on controlling the displacement deformation.


2013 ◽  
Vol 663 ◽  
pp. 80-86
Author(s):  
Hai Qing Liu ◽  
Ming Ji Ma ◽  
Gui Jun Wang

More and more irregular structure appears in people's lives, while the theoretical research and disaster experience show that the irregular structure in the earthquake will produce translation and torsion coupled spatial vibration, and sometimes it will cause very serious consequences. Being based on the practical engineering -the Castle Hotel of Dalian, this text makes use of finite element analysis software--- ANSYS. By analyzing the dynamic characteristics and seismic response, we get the self-vibration characteristics of the structure and the time history curve of top level displacement and acceleration of the structure under the effect of earthquake forces. The calculation results indicate that it is effective and reasonable to set up three-dimensional finite element model used for the analyzing of seismic response by ANSYS.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292
Author(s):  
Sergei V. Smirnov ◽  
Vladimir V. Kopylov ◽  
Alexander R. Makarov ◽  
Alexander A. Vorobyev ◽  
Kirill V. Shkarin

The article describes the features developed by the authors of the profiling method of the piston skirt, provides the main parameters that affect the lubrication conditions of the piston skirt and the magnitude of mechanical losses. In computational studies, the basic formulas are given for determining the thickness of the oil layer in a piston skirt - cylinder sleeve conjunction to assess the nature of friction. To determine the deformations, the finite element method is used on the spatial model of the piston. To verify the finite element model, a stand for experimental studies was developed. The article describes the developed stand, the methodology and results of experimental studies of the stress-strain state of the two-piece piston skirt obtained at this stand and a comparative analysis of the results of the calculated and experimental studies of the stress-strain state of the two-piece piston skirt of a diesel engine. The research results showed that the developed stand can be used to verify mathematical models for calculating the stress-strain state of the piston skirt in the pilot production of internal combustion engine pistons to accelerate and reduce the cost of the piston design development process, as well as the results of experimental studies obtained at the stand, can be used as initial data for the developed mathematical model of the dynamics of the movement of the piston and the profiling of the piston skirt.


2013 ◽  
Vol 4 (1) ◽  
pp. 167-183 ◽  
Author(s):  
G. Kouroussis ◽  
O. Verlinden

Abstract. The multibody approach is now recognized as a reliable and mature computer aided engineering tool. Namely, it is commonly used in industry for the design of road or railway vehicles. The paper presents a framework developed for predicting the vibrations induced by railway transportation. Firstly, the vehicle/track subsystem is simulated, on the basis of the home-made C++ library EasyDyn, by mixing the multibody model of the vehicle and the finite element model of the track, coupled to each other through the wheel/rail contact forces. Only the motion in the vertical plane is considered, assuming a total symmetry between left and right rails. This first step produces the time history of the forces exerted by the ballast on the foundation, which are then applied to a full 3-D FEM model of the soil, defined under the commercial software ABAQUS. The paper points out the contribution of the pitch motion of the bogies and carbodies which were neglected in previous publications, as well as the interest of the so-called coupled-lumped mass model (CLM) to represent the influence of the foundation in the track model. The potentialities of the model are illustrated on the example of the Thalys high-speed train, riding at 300 km h−1 on the Belgian site of Mévergnies.


Sign in / Sign up

Export Citation Format

Share Document