Development and Characterization of Orally Dissolving Tablet of a Poorly Soluble Antiemetic Drug

Author(s):  
Beena P ◽  
Arun G Krishnan ◽  
Nisha Ullas ◽  
Chippy S Pillai ◽  
Sam C Mathew ◽  
...  

The aim of present work is to prepare the orally dissolving tablets of poorly soluble Ondransetron Hydrochloride as its soluble form by adopting complexation method using different superdisintegrants alone and in combination. The growing importance of orally dissolving tablet was underlined recently when European Pharmacopoeia adopted the term “Oro dispersible tablet” as a tablet that to be placed in the mouth where it disperses rapidly before swallowing. Their characteristic advantages such as administration without water anywhere, anytime lead to their suitability to geriatric and paediatric patients. The complex prepared was showed better solubility in simulated salivary PH of 6.8. The pre compression characteristics of drug, drug with Beta cyclodextrin and final blend were evaluated with respect to standards. Results of the study showed that the optimized tablet with combination of superdisintegrants (2.5% crosspovidone, 3.5% sodium starch glycolate) showed hardness of 3.5Kg/Cm2, thickness 2.10mm, wetting time 18 sec, drug content 99.15%, disintegration time 20sec, in-vitro dispersion time 25sec, in-vitro drug release of 89.59% (in 3min) and percentage of drug permeation as 89.45% (in 5 min) and it is comparable with higher percentage of superdisintegrants used for tablet preparation. So this method was a promising approach for developing cost effective dosage form with high efficacy in treatment.

Author(s):  
Rupalben K. Jani ◽  
Gohil Krupa ◽  
Aanal Gandhi ◽  
Vijay Upadhye ◽  
Roshani Pragnesh Amin

The foremost objective of this research was to compare and evaluate natural super disintegrants with synthetic super disintegrants for the preparation of the orodispersible tablet. Tropisetron hydrochloride is widely used as an antiemetic drug, which is a potential drug candidate for developing an orodispersible tablet for quick onset of action. Various formulations were prepared using different concentrations (5%, 7.5%, and 10%) by direct compression method of natural super disintegrants (Banana power and Cassia tora powder) and synthetic super disintegrants (Croscarmellose sodium, Crospovidone, and Sodium starch glycolate). The compatibility studies between the drug and excipients were carried out using FTIR spectroscopy before tablet formulation. The pre-compression parameters were evaluated for additive properties. Standardization of banana powder was done by various parameters like extractive value, ash value, loss on drying, TLC identification test, etc. Post-compression parameters like hardness, weight variation, friability, thickness, the time required for disintegration, wetting time, the release of drug in-vitro, and in-vitro dispersion time of the tablets were evaluated. The disintegration time and in-vitro drug release of optimized formulation (F2) were found to be 4.66±1.15 secs and 99.25±0.15%. The optimized formulation (F2) was subjected to stability studies (40 C& 75 % RH) for one month. The results were shown that natural super disintegrants require less disintegration time as compared to synthetic super disintegrants. Hence present study reveals that the orodispersible tablets prepared using Banana powder and Cassia tora powder is super disintegrants that shown better appearance and rapid disintegration time.


2021 ◽  
Vol 10 (2) ◽  
pp. 71-80
Author(s):  
Shrestha Prabhat ◽  
Shrestha Rajan ◽  
Shrestha Sahana

Objective: This study aims to prepare the taste-masked granules of Mirtazapine by mass extrusion technique and formulate it into an oral dispersible tablet using different super disintegrates. Methods: Taste masked granules of mirtazapine were prepared by mass extrusion technique using Eudragit EPO in different ratios. The drug-polymer ratio was optimized based on the percent drug release in SSF and SGF. Taste masking efficacy of drug-polymer complex was determined by developing the bitterness threshold value of Mirtazapine. The selected drug-polymer complex was formulated into an oro-dispersible tablet by direct compression method. A randomized design was used to investigate individual effect of three different super disintegrates each in different concentrations. Ten formulations were developed including a controlled formulation without the addition of superdisintegrants. A comparative study was done based on various pre-compression and post-compression parameters. Results: Eudragit EPO was able to mask the bitter taste of Mirtazapine effectively in 1:2 ratio by mass extrusion method. The minimum disintegration time and wetting time was found to be 13.6±2.7 and 18.13±0.24 seconds with the formulation containing crospovidone 5% (F9). It was found that the wetting time and disintegration time followed the order SSG>CCS>CPV. The selected best formulation was subjected to an incompatibility study design. The IR spectrum showed that all the excipients were chemically compatible. Conclusion: Thus, in this study unpalatable taste of Mirtazapine was masked using Eudragit EPO polymer by mass extrusion technique, and superdisintegrants were added to prepare orally disintegrating tablets of Mirtazapine. This research work suggests a rapid, simple and cost effective method for formulating Mirtazapine ODT.


2019 ◽  
Vol 9 (2) ◽  
pp. 259-269
Author(s):  
Rada Santosh Kumar ◽  
T. Naga Satya Yagnesh

In solid dosage forms, fast dissolving tablets has proven the best way for ease of administration for the pediatrics and geriatric patients. The current study involves in the evaluation of starch glutarate as a superdintegrant in the formulation of fast dissolving tablets of poorly soluble drugs employing 23factorial design. Starch glutarate was synthesized by esterification process. The synthesized starch glutarate was subjected to physical and micromeritic evaluation. To establish as starch glutarate as a superdisintegrant, fast dissolving tablet of aceclofenac was prepared employing starch glutarate in different proportions in each case by direct compression method employing 23 factorial design. All fast dissolving tablets prepared were evaluated for drug content, hardness, friability, disintegration time and other dissolution characteristics like percent dissolved in 5 min (PD5), Dissolution efficiency in 5 min (DE5%) and first order rate constant (K1). The starch glutarate prepared was found to be fine, free flowing amorphous powder. Starch glutarate exhibited good swelling in water. Fourier transform infrared spectra (FTIR) and Differential scanning calorimetry (DSC) study indicated the absence of interaction between aceclofenac and starch glutarate. All the fast dissolving tablets formulated employing starch glutarate were of good quality with regard to drug content (100±5%), hardness (3.6–4 kg/sq. cm), and friability (0.12-0.15%). The optimized formulation F8 has the least disintegration time i.e., 30±0.02s. The in vitro wetting time was less (i.e., 90s) in optimized formulation F8. The cumulative drug dissolved in the optimized formulation F8 was found to be 99.15±0.56% in 15 min. Starch glutarate was found to be a superdisintegrant which enhanced the dissolution efficiency when combined with crospovidone, croscarmellose sodium, with the aceclofenac and hence it could be used in the formulation of fast dissolving tablets to provide immediate release of the contained drug within 15 minutes. Keywords: Fast dissolving, Superdisintegrant, Starch glutarate, Dissolution efficiency.


2020 ◽  
Vol 11 (4) ◽  
pp. 8101-8107
Author(s):  
Arindam Chatterjee ◽  
Shaik Mohammad Abdulla ◽  
Nagarajan G ◽  
Birendra Shrivastava

Nifedipine has a bioavailability of 45-56 percent and a 2-hour elimination half-life. It has a 50 percent kidney excretion rate and a 5-15 percent bile excretion rate. The intention of this research is to invent and evaluate Nifedipine loaded ODT and to prove the enhancement of bioavailability. The 23 factorial optimization design exposed about the outcome of independent variable on dependent variable throughout the formulation of Nifedipine ODT. From the records, it was accomplished that there was a good correlation between Disintegration time, Dissolution rate and super disintegration concentration. The formulation F4 (Nifedipine ODT) has achieve the goal of ODT drug delivery with desired release characteristics, cost-effective, decreased dose, effective administration and hence improved patient compliance. The invivo pharmacokinetic studies reveals that increase in AUC0-∞; decrease in Tmax; increase in Cmax in Nifedipine ODT shows better bioavailability and faster duration of therapeutic action than marketed Nifilat® dosage form. Nifedipine ODT was stable at various temperature, humidity conditions and there was no drastic change in evaluation parameters. That it was concluded that Oral dispersible tablet (ODT) was a suitable dosage form to enhance the solubility at the same time the bioavailability of BCS class II drugs like Nifedipine.


2019 ◽  
Vol 9 (2) ◽  
pp. 160-169
Author(s):  
Rada Santosh Kumar ◽  
T. Naga Satya Yagnesh

The current scenario deals with the study of fast dissolving tablets for the patients suffering from swallowing, sickness ,etc.  The present investigation involves in the evaluation of starch tartrate as a superdintegrant in the formulation of fast dissolving tablets of poorly soluble drugs employing 23factorial design. Starch tartrate was synthesized by esterification process. The synthesized starch tartrate was subjected to physical and micromeritic evaluation. All fast dissolving tablets were evaluated for drug content, hardness, friability, disintegration time and other dissolution characteristics like percent dissolved in 5 min (PD5), dissolution efficiency in 5 min (DE5%) and first order rate constant(K1). The starch tartrate prepared was found to be fine, free flowing slightly crystalline powder. Starch tartrate exhibited good swelling in water.Fourier transform infrared spectra (FTIR) and Differential scanning calorimetry (DSC) study indicated the absence of interaction between ibuprofen and starch tartrate. All the fast dissolving tablets formulated employing starch tartrate were of good quality with regard to drug content (200±5%), hardness (3.6–3.9 kg/sq. cm), and friability (0.12-0.15%). The optimised formulation F2 has the least disintegration time i.e., 9±0. 03s. The in–vitro wetting time was less (i.e., 60s) in optimized formulation F2. The water absorption ratio of the formulated tablets was found to be in the range of 27.53±0.12 to 69.75±0.18%. The cumulative drug dissolved in the optimized formulation F2 was found to be 100.17±0.56% in 5 min. Starch tartrate was found to be a superdisintegrant which enhanced the dissolution efficiency with the ibuprofen and hence it could be used in the formulation of fast dissolving tablets to bring immediate release of the contained drug within 5 minutes. Keywords: Fast dissolving, Superdisintegrant, Starch tartrate, Dissolution efficiency.


2021 ◽  
Vol 11 (6) ◽  
pp. 25-30
Author(s):  
Prashant L. Pingale

Rosuvastatin belongs to the statin medication class, which is used to treat excessive cholesterol and prevent heart disease. The Biopharmaceutical Classification System classifies it as class II. The goal of this project is to create 10 mg Rosuvastatin instant release pills using several types of materials. To boost the drug's bioavailability, superdisintegrants were used to speed up the disintegration and dissolution of Rosuvastatin calcium. Cited research work aims to formulate an immediate release tablet of Rosuvastatin for the treatment of hypercholesterolemia, hypolipoproteinemia, and atherosclerosis. The present work used a cost-effective wet granulation process to create an immediate release formulation of Rosuvastatin calcium. All of the batches were manufactured, and the granules were evaluated for pre-compression properties such as loss on drying, bulk density, tapped density, and compressibility index. Disintegration time and assay were determined to be within acceptable parameters, as were weight fluctuation, thickness, hardness, and friability of tablets. The effect of several superdisintegrants on in vitro dissolutions in 6.8 PH phosphate buffer was investigated. The final formulation was chosen based on the dissolving profile; dissolution studies revealed that formulations F2 and F4 released 80 percent of the medication within 15 minutes. Two different formulations of Rosuvastatin Calcium 5.199 and 10.398 mg employing immediate-release tablets were successfully generated using Crospovidone, Meglumine, and Comprecel 112D+®. The tablets showed complete drug release in 60 minutes and fair flow characteristics when compared to the innovators' product.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 185-195
Author(s):  
SANTOSH KUMAR RADA ◽  
T. Naga Satya Yagnesh

Objective: To enhance the solubility of poorly soluble drugs by using 23 factorial design in the formulation of fast dissolving tablets by employing starch oxalate as a superdisintegrant. Methods: Starch oxalate was synthesized by gelatinization process. The physical and micromeritic properties were performed to evaluate the synthesized starch oxalate. By using 23 factorial design, atenolol fast dissolving tablet was prepared by employing starch oxalate as a superdisintegrant in different proportions in each case by direct compression method. In the evaluation of fast dissolving tablets the drug content, hardness, friability, disintegration time and other dissolution characteristics were utilized. Results: The starch oxalate prepared was found to be fine, free-flowing completely amorphous powder. The compatibility between atenolol and starch oxalate were studied and showed no interaction. The drug content, hardness, and friability have been effective with regard to all the formulated fast dissolving tablets employing starch oxalate. The optimised formulation F8 has the least disintegration time i.e., 24±0.06s. The In–vitro wetting time was less (i.e., 28s) in optimized formulation F8. The water absorption ratio of the formulated tablets was found to be more in F8 formulation 94.42±0.18%. The cumulative drug dissolved in the optimized formulation F8 was found to be 98.70±0.24% in 5 min. Conclusion: The dissolution efficiency of atenolol was enhanced when starch oxalate was found to be a superdisintegrant when combined with sodium starch glycolate, crospovidone and, hence to provide immediate release of the formulated fast dissolving tablets contained drug it could be used.


2015 ◽  
Vol 05 (01) ◽  
pp. 040-044
Author(s):  
D S Sandeep ◽  
R Narayana Charyulu ◽  
Prashant Nayak

AbstractIn the present investigation comparison of three different superdisintegrants was carried out by formulating orally disintegrating tablets. Promethazine HCl was used as model drug which is an antiemetic drug. Sodium starch glycolate, croscarmellose and crospovidone were selected as superdisintegrants and each one was used in three different concentrations (2%, 3.5% and 5%). The drug-polymer compatibility was ruled out by FTIR studies. A total of nine formulations (PF1-PF9) were made by direct compression. All prepared formulations were evaluated for weight variation, hardness, friability, drug content, disintegration time, wetting time and in vitro drug release parameters. The results of the evaluation parameters for all the nine formulations of promethazine HCl were within the standard limits. The in vitro drug release for promethazine HCl tablets of all the formulations (PF1-PF9) was carried out using phosphate buffer pH 6.8 as dissolution medium. Among all the formulations the tablets formulated with crospovidone (PF7-PF9) have shown 91.43 - 98.43% (maximum) drug release at the end of 10 min than sodium starch glycolate and croscarmellose, hence from the present work, it concluded that among three superdisintegrants crospovidone is the ideal superdisintegrant for formulating oral disintegrating tablets for promethazine HCl.


Author(s):  
Swati Mittal ◽  
AKSHAY SONAWANE ◽  
MANGESH KHUNE

Glibenclamide is a BCS Class II drug and poses a major problem during formulation development. In the present study, adsorption onto various carriers was used to enhance the solubility of glibenclamide. It was observed that solubility of glibenclamide was greatly enhanced by adsorbing onto mesoporous silica. The increase in solubility of poorly soluble drugs is often associated with the generation of supersaturation, which results in the risk of drug precipitation. HPMC E5 was used as precipitation inhibitor to maintain sink condition for a longer duration. A 32 full factorial design was adopted to optimize the ratio of glibenclamide (X1) and mesoporous silica as a carrier (X2) and the effect of different ratios was studied on percent yield, percent drug loading, and percent drug release. X-ray powder diffraction (XRPD) and Differential scanning calorimetry studies were performed to investigate any possible interaction in between glibenclamide and mesoporous silica. An optimum batch of drug adsorbate was used to prepare immediate-release tablets. The tablets prepared were evaluated for thickness, uniformity of weight, hardness, friability, in-vitro disintegration time, and in vitro drug release study.


Author(s):  
R. SANTOSH KUMAR ◽  
KUMARI ANNU ◽  
B. KUSUMA LATHA ◽  
T. MALLIKA

Objective: The objective of the present research was to prepare starch phthalate (a novel super disintegrant) and to optimize and formulate ibuprofen fast dissolving tablets employing 23factorial design using starch phthalate as super disintegrant. Methods: Drug excipient compatibility studies like Fourier-transform infrared spectroscopy (FTIR) and thin-layer chromatography (TLC) studies were carried out to check the drug interaction between ibuprofen and starch phthalate. Direct compression method was used for tablet preparation. Prepared tablets were then evaluated for hardness, friability, drug content, disintegration time, water absorption and wetting time, in vitro dissolution studies. Response surface plots and contour plots were also plotted to know the main effects and interaction effects of independent variables (starch phthalate (A), croscarmellose sodium (B) and crospovidone (C)) on dependent variables (disintegration time and drug dissolution efficiency in 1 minute) and stability studies were also done. Results: Tablets of all formulations were of good quality concerning drug content (100±5%), hardness (3-6 kg/cm2), and friability (less than 0.16%). In all formulations, formulation F5 found to be optimized formulation with least disintegration time 20±0.28 seconds, less wetting time 09±0.12 seconds and enhanced dissolution rate in one minute, i.e., 91.95±0.22 as compared to other formulation. Conclusion: From the research, it was concluded that on combination with crospovidone, starch phthalate enhanced the dissolution efficiency of the drug. Hence, starch phthalate can be used as a novel disintegrant in the manufacturing of fast dissolving tablets.


Sign in / Sign up

Export Citation Format

Share Document