A Short Review on Fluidized Bed Dryer

Author(s):  
Akash H. Mali ◽  
Aditya R. Nikam ◽  
Azam Z. Shaikh.

This artical also discusses about demostration of fluidized bed dryer with principle and application and other processing. This has lead to development of thechnology, process and equipments which not only reduce time but also increasing the output. A Fluidized bed dryer significantely reduce drying time, compared with vaccum dryer or tray dryer. In the pharmacutical industry, fluidized bed dryer are typically used for pellets drying, coating and granulation. Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying process particularly pharmacy product. In this paper we show construction, working of the fluidized bed dryer. It work on the drying principle. It has several advantages and disadvantages.

Today many industries now use the dryer as a part of grain-drying process even during wet and dry seasons. This helps in reducing spoilage and wastage of paddy. Mostly the available industrial dryers are expensive to purchase and to maintain its smooth functioning. This study therefore is a step to design a simple Plug flow fluidized dryer that can lead to introduce small scale dryers to paddy process industry. The Plug flow fluidized bed dryers are designed and fabricated in this study consists of the drying chamber, hot air distributer plate, hot air inlet and exit system, paddy entry and exit system, fluidization chamber unit with temperature control unit and the centrifugal fan. The evaluation of dryer is based on drying time and reduction in moisture content and outlet temperature of paddy on quality parameters. Dryer dimensions are very important to analyze heat and mass transfer analysis of the Plug flow fluidized bed drying process of paddy grains. It was found d that heat and mass transfer properties of paddy grains in fluidized bed dryer was decreases as the time of drying passes and very rapid at the start of drying. The model present here predicts about dryer dimensions along safe zone of rough rice moisture content with other parameters. Simulation results show a good agreement between the simulation model and the existing simulation models


2014 ◽  
Vol 54 (3) ◽  
pp. 231-239
Author(s):  
Michal Pěnička ◽  
Pavel Hoffman ◽  
Ivan Fořt

<p class="TextCxSpFirst">This article describes intensification of the fluidized-bed drying process for regenerated spherical-shape ion exchanger particles in the batch mode, achieved by a mechanical stirrer in the fluidized bed layer of the dried particles. The effect of the mechanical stirring system on the drying process was examined.</p> <p class="TextCxSpLast">Calculations as well as results of comparison measurements provide evidence of a favourable effect of stirring on the total drying time as compared to the initial unstirred system. The regenerated ion exchanger particles pass to the fluid state in a shorter time and the ultimate total drying time is thus more than 60% shorter.</p>


Author(s):  
Amanat Kaur ◽  
Yvan Gariépy ◽  
Valérie Orsat ◽  
Vijaya Raghavan

The drying kinetics of celery in a microwave assisted fluidized bed dryer was studied at different drying air temperatures (45°C, 55°C and 65°C) and at different initial microwave power densities (0W/g, 1W/g and 2W/g). Dried product quality, product mass, air temperature, air relative humidity, and electric power consumption were used to monitor the performance of the drying process. The results showed that the Midilli-Kucuk model was best in predicting the moisture ratio as a function of drying time. At any given temperature, the utilization of the microwave energy reduced by more than 50% the drying time. Keywords: drying; celery; MWFBD


2012 ◽  
Vol 8 (2) ◽  
Author(s):  
Wei Wang ◽  
Luyao Wang ◽  
Yanqiu Pan ◽  
Mo Chen ◽  
Guohua Chen

A two-dimensional mathematical model of simultaneous heat and mass transfer for porous media drying was derived based on the Whitaker’s theory in the present study. The cylindrical coordinate system, which is more practical than the spherical one, was adopted. The model was solved numerically under the circumstance of fluidized-bed drying. The control-volume method with the fully implicit scheme was applied for discretization of governing equations. Physical properties of apple were selected in the simulation. Under typical operating conditions, heat and mass transfer mechanisms were analyzed based on the profiles of temperature and saturation inside the particles. Effects of the temperature, humidity and inlet velocity of hot gas were examined under different operating conditions. Simulation results show that the drying process can be significantly affected by coupled heat and mass transfer between gas and solid phases. The drying time increases with the increase in temperature and velocity of inlet hot gas, and decreases with the increase in humidity and bed area factor.


REAKTOR ◽  
2011 ◽  
Vol 13 (3) ◽  
pp. 155 ◽  
Author(s):  
Abadi Jading ◽  
Eduard Tethool ◽  
Paulus Payung ◽  
Sarman Gultom

PHYSICOCHEMICAL CHARACTERISTICS OF SAGO STARCH OBTAINED FROM FLUIDIZED BED DRYING USING SOLAR AND BIOMASS POWERED CROSS FLOW FLUIDIZED BED DRYER. The research aim is to study the comparative quality of sago starch drying results using cross flow fluidized bed dryer powered by solar and biomass in conventional drying, particularly the chemical composition and physicochemical characteristics. This research was conducted through a drying phase of wet sago starch using a cross flow fluidized bed dryer, and drying in conventional as well as dried sago starch quality testing results are drying. The results of this study indicate that dry sago starch which has been drained by means of cross flow fluidized bed dryer has a chemical composition that does not vary much with starch which is dried by conventional drying, so that the dried sago starch produced by the dryer is very good. On the other hand the use of dryers is the more correct because the physicochemical properties of sago starch using a low drying temperature and drying time is short. Tujuan penelitian ini adalah mempelajari perbandingan kualitas pati sagu hasil pengeringan menggunakan alat pengering cross flow fluidized bed bertenaga surya dan biomassa dengan pengeringan secara konvensional, khususnya komposisi kimia dan karakteristik fisikokimia. Penelitian ini dilakukan melalui beberapa tahapan yaitu pengeringan pati sagu basah menggunakan alat pengering cross flow fluidized bed, pengeringan secara konvensional serta pengujian kualitas pati sagu kering hasil pengeringan. Hasil dari penelitian ini menunjukkan bahwa pati sagu kering yang telah dikeringkan dengan alat pengering cross flow fluidized bed memiliki komposisi kimia yang tidak berbeda jauh dengan pati yang dikeringkan dengan cara pengeringan secara konvensional, sehingga pati sagu kering yang dihasilkan oleh alat pengering tersebut sangat baik. Di sisi lain penggunaan alat pengering ini semakin memperbaiki sifat fisikokimia pati sagu sebab menggunakan suhu pengeringan yang rendah dan waktu pengeringan yang singkat.   Kata Kunci: pengering unggun terfluidakan; fisikokimia; pati sagu


1999 ◽  
Vol 23 (1B) ◽  
pp. 129-145 ◽  
Author(s):  
E. Hajidavaloo ◽  
F. Hamdullahpur

A mathematical model for simulation of simultaneous unsteady heat and mass transfer in fluidized-bed drying of large particles is proposed. A set of coupled non-linear partial differential equations is employed to accurately model the process without using adjustable parameters. A three phase model representing a bubble (dilute) phase, interstitial gas phase and a solid phase is used to describe the thermal and hydrodynamic characteristics of the bed. The bubble and temperature distributions inside the solid phase is applied. The flow field is divided by an orthogonal grid to a finite number of control volumes to simulate the variation of the properties for the three phases in longitudinal direction. The Crank-Nicholson implicit numerical method is applied to solve the set of coupled nonlinear partial differential equations with variable mass and thermal diffusivity for a spherical-shape particle. A pilot-scaled fluidized bed dryer was built to test the results of proposed model with those obtained by experiments using wheat particles as a bed charge. A good agreement between the numerical and experimental results is observed.


2018 ◽  
Vol 225 ◽  
pp. 06007
Author(s):  
Mohd Azlan Zulkarnain ◽  
Nor Farhanim Md Rashid ◽  
Ahmmad Shukrie Md Yudin

Red chili is an agricultural product that contains high moisture. In this study, the drying process of red chili was conducted by using two methods which are conventional method of drying under the sun and by using swirling fluidized bed dryer. A fluidized bed column of 108 mm in diameter with slotted distributor of 45° inclination angles was used in the experiment. Result of drying by using conventional method showed that for 1kg of sample the drying time was 13 days with 212g weight reduction and the color of the red chili changed from red to dark red. Meanwhile for swirling fluidized bed dryer the time required was 4 days, 200g weight reduction and the color of red chili maintained. Based on the results obtained, the drying of red chili by using swirling fluidized bed dryer is more efficient as compared to drying by using conventional method.


2011 ◽  
Vol 6 (6) ◽  
pp. 595-605 ◽  
Author(s):  
M. Keshavarz Moraveji ◽  
S.A. Kazemi ◽  
R. Davarnejad

Sign in / Sign up

Export Citation Format

Share Document