scholarly journals Optimization and Characterization of Self Nano Emulsifying Drug Delivery System loaded with 18- β Glycerrhetinic acid

Author(s):  
Heena Farooqui ◽  
Prashant Upadhyay

The purpose of this study was to prepare, optimize and evaluate self nano emulsifying drug delivery system (SNEDDS) containing 18- β glycerrhetinic acid which enhances the dissolution profile or bioavailability of the drug in comparison to pure suspension of 18- β glycerrhetinic acid.18- β glycerrhetinic acid loaded SNEDDS having geranium oil as oil phase, tween 80 as a surfactant, and dimethyl sulfoxide (DMSO) as co-surfactant were prepared using pseudo ternary phase diagram and Box-Behnken experimental design was used to optimize the different formulations. Optimized formulations were characterized for self-emulsifying time, globule size, zeta potential, and drug release. The mean droplet size and PDI of the optimized formulation were found to be in a variation of 93.42 nm and 0.401 respectively. FTIR data showed no physicochemical interaction between excipients and drug. The encapsulation efficiency of optimised 18- β glycerrhetinic acid SNEDDS was found 80.12±1.52% , % transmittance was found 99.34±0.134% and the viscosity of all the formulations was found 0.8872 cp. Three-dimensional response surface plots and two-dimensional contour plots of the responses across the selected factors were constructed that explained the relationship between the independent and dependent variables. Release kinetics was calculated by using KinetDS3.0. It was concluded that prepared formulations were formulated with approximately desired mean droplet size confirmed by Box- Behnken experimental design as well as properly optimized and characterized.

2019 ◽  
Vol 7 (4) ◽  
pp. 328-338
Author(s):  
Rajan Kalamkar ◽  
Shailesh Wadher

Background: Phosal based excipients are liquid concentrates containing phospholipids. They are used to solubilize water-insoluble drug and also act as an emulsifier to get the smallest droplet size of the formed emulsion after administration. Objective: The aim is to prepare phosal based self nanoemulsifying drug delivery system (SNEDDS) for water insoluble drug zaltoprofen. Methods: The various parameters like solubility of drug in different vehicles, ternary phase diagram are considered to formulate the stable emulsion which is further characterized by Self emulsification time and globule size analysis to optimize liquid SNEDDS of Zaltoprofen. Optimized L-SNEDDS was converted into free-flowing powder Solid-SNEDDS (S-SNEDDS). S-SNEDDS was evaluated for Globule size analysis after reconstitution, in vitro dissolution study and in vivo pharmacokinetic study in rats. Results: Phosal 53 MCT with highest drug solubility was used as oil along with Tween 80 and PEG 400 as surfactant and cosurfactant respectively to prepare liquid SNEDDS. Neusilin us2 was used as an adsorbent to get free-flowing S-SNEDDS. S-SNEDDS showed improved dissolution profile of the drug as compared to pure drug. In vivo study demonstrated that there is a significant increase in Cmax and AUC of S-SNEDDS compared to zaltoprofen powder. Conclusion: Phosal based SNEDDS formation can be successfully used to improve the dissolution and oral bioavailability of poorly soluble drug zaltoprofen.


Author(s):  
M. Sunitha Reddy ◽  
Baskarla Sravani

Present research work was aimed to enhance aqueous solubility and dissolution rate of olanzapine by solid self nano emulsifying drug delivery system(S-SNEDDS). Olanzapine is a BCS class II drug having 65% oral bioavailability; it is used in the treatment of psychosis, depression and mania conditions. Oils, Surfactants, Co surfactants were selected depending upon the saturated solubility of olanzapine in those components; excipients were screened depending on olanzapine solubility in various oils, surfactants and co surfactants. Surfactant: co surfactant {Smix} ratios i.e., 3:1 and 4:1 were prepared to determine nano emulsion regions and also to formulate liquid self nano emulsifying drug delivery system (L-SNEDDS). Pseudo ternary phase diagram were plotted by using Triplot version 4.1.2 software, nano emulsion region was determined and evaluated. Formulations were designed based on saturated solubility of olanzapine and Pseudo ternary phase diagram using various ratios of oils [Capryol 90], surfactants [Kolliphor EL], co surfactants [Lauroglycol 90] depending on its solubility and nano emulsion formation four formulations were developed which are further selected for characterisation of L-SNEDDS like robustness to dilution, self emulsification, determination of droplet size, PDI, Drug loading efficacy, zeta potential and also Invitro drug release. Among those four formulations, F1 (SB184J 4:6) was optimum because compared to other three formulations F3 gave best results in terms of droplet size (66nm) with PDI (0.24), Invitro drug release, dissolution rate of F1 SNEDDS having (88.201± 0.25%). Invitro drug release of F1 formulation was compared with that of Olanzapine [API] (45.281± 0.52%) the results indicating that there is a increase in solubility and dissolution rate of olanzapine by 2.2 times more compared to pure olanzapine (API). F1 (SB184J 4:6) were converted into S-SNEDDS by adsorption process by addition porous carriers (Aerosil 200). Formulated S-SNEDDS were undergone various evaluation parameters and also reconstitution parameters to determine Droplet size and Invitro drug release of solid F1 (SB184J4:6) formulation. The results of present study demonstrates that olanzapine SNEDDS has an ability and potential to enhance solubility and dissolution rate.


2019 ◽  
Vol 10 (4) ◽  
pp. 3304-3314
Author(s):  
Sabitri Bindhani ◽  
Snehamayee Mohapatra ◽  
Rajat Ku. Kar ◽  
Utkalika Mahapatra

Eprosartan Mesylate (EM), an angiotensin II receptor blocker used in the treatment of high blood pressure. But poor solubility and bioavailability (13%) of eprosartan mesylate is a major challenging factor for improving its drug release rate. The main objective of the present work to develop and characterize self micro emulsifying drug delivery system of eprosartan mesylate by using compatible oil, surfactant and co-surfactant. For the selection of oil, surfactant and cosurfactant, solubility screening studies has been carried out. The nine formulations are prepared using peppermint oil, tween 80 and PEG 400. A pseudo ternary phase diagram was prepared to determine the self emulsion region. Four optimized formulations were prepared at 1:1 ratio(a mixture of surfactant and cosurfactant). These four formulations were evaluated for self-emulsification time, droplet size measurement, drug content analysis robustness to dilution test, viscosity analysis, f.t.i.r. The study and in-vitro diffusion studies. The ratio of scosmix (a mixture of surfactant and cosurfactant) of optimized formulation (pf5) was varied to pfa1 (2:1), pf2 (3:1), pfa3 (1:2) and compared with pure drug. The formulation having pfa1 (2:1) shown drug release of 93.13 % in 330 minutes where as pure drug showed a drug release of 54.51% in 330 minutes. So the prepared SMEDDS formulations were efficient and better than the pure drug, and it followed Korsmeyer pappes due to highest r2 value followed by Hixon crowel. It was concluded that incorporation of eprosartan mesylate in selfmicroemulsifying system is a great potential for improving the solubility and dissolution rate of eprosartan mesylate.


This work reported a first liquid self-nanoemulsifying drug delivery system (SEDD) of cilostazol using oleic acid as oil phase, tween 80 as surfactant, and transcutol as co-surfactant. Cilostazol is a poor water-soluble phosphodiesterase III inhibitor, which has antiplatelet and vasodilator effect used to relief intermittent claudication symptoms. Cilostazol solubility was determined in various oils, surfactants and co-surfactants and phase diagram was constructed at different oil: surfactant: co-surfactant ratios to determine the existence of nano-emulsion region. The in-vitro dissolution profile showed an optimized cilostazol SEDD formula (LT1) containing oleic acid (10%) as oil, tween 80 (45%) as surfactant, and transcutol (45%) as co-surfactant in comparison with the commercial conventionally Tablets. The LT1 formula was thermodynamically sTable, with a zeta potential of -30.48 mV and droplet size 154 nm. The LT1 capsule showed a superior dissolution profile (100%) when compared to the commercial Tablet (64%) of cilostazol. The objective of the present study is to formulate cilostazol as an oral liquid SEDD with better solubility and drug release to overcome a variable bioavailability of the commercial Tablet in which a high-fat meal increases absorption to approximately 90%.


Author(s):  
AMRIT PAL SINGH ◽  
GOPAL L. KHATIK ◽  
VIJAY MISHRA ◽  
NAVNEET KHURANA ◽  
NEHA SHARMA ◽  
...  

Objective: The aim of the present study was to develop and characterize self-nano emulsifying drug delivery system (SNEDDS) of methanolic extract of Eriobotrya japonica (Thunb.) Lindl. (E. japonica) leaves. Further in vitro antioxidant and antidiabetic potential of an optimized batch of SNEDDS was explored. Methods: Oil (Labrafil M 1944 CS), surfactant (Tween 80) and co-surfactant (Transcutol P) were selected on the basis of solubility of the methanolic extract. Twenty-seven batches of SNEDDS were prepared with different compositions of oil, surfactant and co-surfactant. The optimized batch was evaluated for its entrapment efficiency, droplet size, polydispersity index (PDI), zeta potential, transmission electron microscopy (TEM). Further, DPPH assay and α-amylase activity were also performed to check the antioxidant and antidiabetic potential of prepared SNEDDS. Results: The optimized design suggested that 10% of Labrafil M 1944CS, 30% of Tween 80 and 60% of Transcutol P could develop SNEDDS with 208 nm mean droplet size, 99.64% drug loading, 0.156 PDI and-6 mV zeta potential. TEM image confirmed the droplet size less than 100 nm and the spherical shape of SNEDDS. In vitro antioxidant and antidiabetic activities of SNEDDS revealed the increased efficacy as compared to that of the ascorbic acid and acarbose, respectively. Conclusion: The optimized batch of SNEDDS was found to improve the antioxidant and antidiabetic efficacy of methanolic extract of E. japonica.


Author(s):  
ARIFA MUSTIKA ◽  
NURMAWATI FATIMAH ◽  
GADIS MEINAR SARI

Objective: Formulation of Singawalang leaves extract should be considered because the extract contains a variety of compounds so that there maybe a competitor in the absorption process and will cause the absorption of active ingredients in the gastrointestinal decline. One way to increase theabsorption and disposition of active ingredients on target organs is to use a nanoparticle formulation. Therefore, this study will conduct research onself-nanoemulsifying drug delivery system (SNEDDS) formulation of Singawalang (Petiveria alliacea) leaves extract.Methods: The systems were developed by investigating the solubility Singawalang leaves extract in various carrier oil, the suitable surfactant,and cosurfactant, construction of SNEDDS of Singawalang leaves extract and characterization of droplet size through particle size analyzer andtransmission electron microscopy.Results: The results of this study indicate that the optimum carrier oils for Singawalang leave extract are miglitol and virgin coconut oil (VCO),the compatible surfactant component is tween 80 and the compatible cosurfactant is propylene glycol (PG). The average droplet size is 13 nm andpolydisperse index 0,004 and 0,006.Conclusion: It can be concluded, the present study demonstrated that the optimum SNEDDS formulations of Singawalang leave extract are themixture of VCO, tween 80, PG at ratio 1:8:1 and miglitol, tween 80, and PG at ratio 2:5:3.


Author(s):  
Vikrant P Wankhade ◽  
Nivedita S Kale ◽  
K.K Tapar

Many chemical entities and nutraceuticals are poor water soluble and show high lipophilicity. It’s difficult to formulate them into oral formulation because of its low aqueous solubility which ultimately affects bioavailability. To enhance the bioavailability of such drugs compounds, self microemulsifying drug delivery system is the reliable drug delivery system. In this system the drug is incorporated in the isotropic system and formulated as unit dosage form. Self microemulsifying drug delivery system is the novel emulsified system composed of anhydrous isotropic mixture of oils, surfactant, and co solvent and sometimes co surfactant. Drug is directly dispersed into the entire gastro intestinal tract with continuous peristaltic movement and drug is available in the solution form of microemulsion, absorbed through lymphatic system and bypasses the dissolution step. Hence they increase the patient compliance. The excipients are selected on basis of construction of ternary phase diagram. Self micro-emulsifying drug delivery system is very useful for drug in which drug dissolution is rate limiting step. This review describes the novel approaches and evaluation parameters of the self microemulsifying drug delivery system towards different classic drugs, proteins-peptides, and nutraceuticals in various oral microemulsion compositions and microstructures.


Author(s):  
Neeraj Singh ◽  
Shweta Rai ◽  
Sankha Bhattacharya

Background: About two-third of new drugs reveal low solubility in water due to that; it becomes difficult for formulation scientists to develop oral solid dosage forms with a pharmaceutically acceptable range of therapeutic activity. In such cases, S-SMEEDS are the best carrier used universally for the delivery of hydrophobic drugs. SEDDS were also used, but due to its limitations, S-SMEDDS used widely. These are the isotropic mixtures of oils, co-solvents, and surfactants. S-SMEDDS are physically stable, easy to manufacture, easy to fill in gelatin capsules as well as improves the drug bioavailability by releasing the drug in the emulsion form to the gastrointestinal tract and make smooth absorption of the drug through the intestinal lymphatic pathway. Methods: We took on the various literature search related to our review, including the peer-reviewed research, and provided a conceptual framework to that. Standard tools are used for making the figures of the paper, and various search engines are used for the literature exploration.In this review article the author discussed the importance of S-SMEDDS, selection criteria for excipients, pseudo-ternary diagram, mechanism of action of S-SMEDDS, solidification techniques used for S-SMEDDS, Characterization of SEDDS and S-SMEDDS including Stability Evaluation of both and future prospect concluded through recent findings on S-SMEDDS on Cancer as well as a neoteric patent on S-SMEDDS Results: Many research papers discussed in this review article, from which it was found that the ternary phase diagram is the most crucial part of developing the SMEDDS. From the various research findings, it was found that the excipient selection is the essential step which decides the strong therapeutic effect of the formulation. The significant outcome related to solid-SMEDDS is less the globule size, higher would be the bioavailability. The adsorption of a solid carrier method is the most widely used method for the preparation of solid-SMEDDS. After review of many patents, it is observed that the solid-SMEDDS have a strong potential for targeting and treatment of a different type of Cancer due to their property to enhance permeation and increased bioavailability. Conclusion: S-SMEEDS are more acceptable pharmaceutically as compare to SEDDS due to various advantages over SEDDS viz stability issue is prevalent with SEDDS. A number of researchers had formulated S-SMEDDS of poorly soluble drugs and founded S-SMEDDS as prospective for the delivery of hydrophobic drugs for the treatment of Cancer. S-SMEEDS are grabbing attention, and the patentability on S-SMEDDS is unavoidable, these prove that S-SMEEDS are widely accepted carriers. These are used universally for the delivery of the hydrophilic drugs and anticancer drugs as it releases the drug to the gastrointestinal tract and enhances the systemic absorption. Abstract: Majority of active pharmaceutical ingredients (API) shows poor aqueous solubility, due to that drug delivery of the API to the systemic circulation becomes difficult as it has low bioavailability. The bioavailability of the hydrophobic drugs can be improved by the Self-emulsifying drug delivery system (SEDDS) but due to its various limitations, solid self-micro emulsifying drug delivery systems (S-SMEDDS) are used due to its advantages over SEDDS. S-SMEDDS plays a vital role in improving the low bioavailability of poorly aqueous soluble drugs. Hydrophobic drugs can be easily loaded in these systems and release the drug to the gastrointestinal tract in the form of fine emulsion results to In-situ solubilisation of the drug. In this review article the author's gives an overview of the solid SMEDSS along with the solidification techniques and an update on recent research and patents filled for Solid SMEDDS.


Author(s):  
Kanuri Lakshmi Prasad ◽  
Kuralla Hari

Objective: To enhance solubility and dissolution rate of budesonide through development of solid self-nanoemulsifying drug delivery system (S-SNEDDS). Methods: Liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) were prepared and ternary phase diagram was constructed using Origin pro 8. Liquid self-nanoemulsifying formulation LF2 having 20% oil and 80% of surfactant/co-surfactant was optimized from the three formulations (LF1-LF3) to convert in to solid, through various characterization techniques like self-emulsification, in vitro drug release profile and drug content estimation. The prepared L-SNEDDS converted into S-SNEDDS, SF1-SF6 by adsorption technique using Aerosil 200, Neusilin US2, and Neusilin UFL2 to improve flowability, compressibility and stability. Results: Formulation LF2 exhibited globule size of 82.4 nm, PDI 0.349 and Zeta potential -28.6 mV with drug indicating the stability and homogeneity of particles. The optimized formulation SF4 containing Neusilin UFL2 was characterized by DSC, FTIR, X-Ray diffraction studies and found no incompatibility and no major shifts were noticed. Formulation SF4 released 100 % drug in 20 min against pure drug release of 47 % in 60 min. Regardless of the form (i.e. liquid or solid) similar performance of emulsification efficiency is observed. Conclusion: The results demonstrated that the technique of novel solid self-nanoemulsifying drug delivery system can be employed to enhance the solubility and dissolution rate of poorly water-soluble drug budesonide.


Sign in / Sign up

Export Citation Format

Share Document