scholarly journals Petroleum Hydrocarbon Quarterly Boiling Range Distribution of Iraqi Crude Oil by Simulated Distillation Method

2021 ◽  
Vol 11 (4) ◽  
pp. 1-16
Author(s):  
Aliaa K. Alhead ◽  
Shatha F. Khaleel

This study includes analysis of different crude oil stock for various field Iraqi oil by gas chromatography instrument, using simulated distillation technique for determining the  initial and final  boiling point distribution and specified compound distillation information (normal paraffins) (Recovery W/W) for (nC5 – nC44), ASTM-D5307 becomes the analytical method. This method need tow samples; the first one spiked with internal standard and the second without internal standard. This analysis for quantitative and qualitative oil characterization which is often useful for evaluating the range of hydrocarbons in crude oil using Simulated Distillation. The study was performed using: Quarterly analysis of SIMDIS GC Distillation for three field (East Baghdad, Badra, Amara) Comparison of analyzes of SIMDIS GC Distillation with Different API (light, intermediate, heavy) with Initial boiling point (IBP). Finding experimental relationship between API and Initial boiling point (IBP):          The result of this study shows that the boiling point increase as the number of carbon is increase, the values of n-Pentane (nC5) to n- Tetratetracontane (nC44) (w/w) changes from winter and summer (difference in temperatures), Positive correlation between C6 and C5 with API, where their percentages increase with increasing API for crude oil and C6 and C5 are lower in summer than in winter due to the evaporation of light components of the samples in summer. Initial boiling point increase as the API is decrease that mean in crude oil have heavy component increases and light component decrease (inverse relationship).

1983 ◽  
Vol 23 (06) ◽  
pp. 937-945 ◽  
Author(s):  
Ching H. Wu ◽  
Robert B. Elder

Abstract Steam distillation can occur in reservoirs during steam injection and in-situ combustion processes. To estimate the amount of vaporized oil caused by steam distillation, we established correlations of steam distillation yields with the basic crude oil properties. These correlations were based on steam distillation tests performed on 16 crude oils from various pans of the U.S. The gravity of oils varied from 12 to 40 deg. API [0.99 to 0.83 g/cm3]. The viscosity of oil ranged from 5 to 4,085 cSt [5 to 4085 mm /s] at 100 deg. F [38 deg. C]. The steam distillations were performed at a saturated steam pressure of 220 psia [1.5 MPa]. One oil sample was used in experiments to investigate the effect of steam pressure (220 to 500 psia [1.5 to 3.4 MPa]) on the steam distillation yield. The experiments were carried out to a steam distillation factor (Vw/Voi) of 20, with the factor defined as the cumulative volume of condensed steam used in distillation, Vw, divided by the initial volume of oil, Voi. At a steam distillation factor of 20, the distillation yields ranged from 13 to 57% of the initial oil volume. Several basic crude oil properties can be used to predict steam distillation yields reasonably well. A correlation using oil viscosity in centistokes at 100 deg. F [38 deg. C] can be used to predict the steam distillation yield within a standard error of 4.3 %. The API gravity can be used to estimate wields within 5.6%. A gas chromatographic analysis was made for each crude oil to obtain the component boiling points (simulated distillation temperatures). A correlation parameter was selected from the simulated distillation results that can be used to estimate the steam distillation yields within 4.5%. Introduction Steamflooding has been used commercially to recover heavy oils for several decades. Although it is considered a heavy-oil recovery process, it has been demonstrated to be an effective and commercially feasible process for recovering light oils. To enhance the effectiveness of the oil recovery process, it is important to fully understand and utilize the basic steamflooding mechanisms. Willman et al. investigated the mechanisms of steamflooding. They concluded that oil viscosity reduction, oil volume expansion, and steam distillation are the major mechanisms for oil recovery. Since then, more research has been done on all phases of steam injection. However, steam distillation and its ramifications on recovery have not been quantified fully because of lack of experimental data. Steam distillation can lower the boiling point of a water/oil mixture below the boiling point of the individual components. SPEJ P. 937^


1983 ◽  
Vol 1983 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Rainer G. Lichtenthaler ◽  
Per S. Daling

ABSTRACT In May and July 1982, two series of dispersant research oil spills were carried out off the Norwegian coast. The May series comprised three discharges of 2,000 liters of Statfjord topped crude oil (initial boiling point 150 °C). Two of the slicks were treated with dispersants (A and B) from a boat while the third untreated slick served as control. The July series comprised four discharges of 2,000 liters of Statfjord crude oil, with the application of three dispersants (A, B, and C), and one untreated slick as control. Water samples were collected from under the slicks and analyzed for total petroleum using a gas chromatographic technique. Chemical analyses showed six percent dispersion of the oil for dispersant A, and 17 percent for dispersant ? in the May series. Effectiveness of dispersants in the July series was found to be 19 percent for dispersant A and 22 percent and two percent for dispersants ? and C, respectively. Gas chromatographic analyses showed in several cases the presence of dispersants (up to two ppm) in water samples without the presence of petroleum at all. The highest oil contents found in water samples were 10 ppm at a one meter depth. The variations in the effectiveness of the three dispersants tested in the field were later confirmed in laboratory tests.


Fuel ◽  
2021 ◽  
Vol 301 ◽  
pp. 121088
Author(s):  
Qian Liu ◽  
Sasha Yang ◽  
Zhenyu Liu ◽  
Qingya Liu ◽  
Lei Shi ◽  
...  

2019 ◽  
Vol 10 (01) ◽  
pp. 20-27
Author(s):  
Dian Kurnia Sari ◽  
Rian Ternando

Minyak bumi dievaluasi guna menentukan potensi minyak bumi sebagai bahan baku kilang minyak untuk menghasilkan fraksi yang dikehendaki. Evaluasi yang dilakukan meliputi pengujian sifat umum minyak bumi, klasifikasi minyak bumi dengan distilasi True Boiling Point (TBP) wide cut (pemotongan jarak lebar) serta analisis fraksi kerosin. Fraksi kerosin yang dihasilkan dari primary process dapat diolah menjadi bahan bakar rumah tangga (minyak  tanah) dan bahan bakar lampu penerangan. Selain itu fraksi kerosin juga dapat dioalah menjadi bahan bakar untuk pesawat terbang jenis jet (avtur). Avtur adalah kerosin yang dengan  spesifikasi yang diperketat, terutama mengenai titik uap dan titik beku. Untuk melakukan pengolahan pada minyak bumi perlu diketahui karakteristik dan spesifikasi minyak  bumi (bahan baku) yang akan diolah untuk mengetahui mutu dan manfaat minyak bumi tersebut. Salah satu parameter uji analisis minyak bumi yaitu parameter sifat fisika. Dari data distilasi TBP diperoleh persentase fraksi kerosin Crude Oil 99 PT HS sebesar 29 % vol sedangkan Crude Oil 165 PT RT sebesar 23 % vol. Berdasarkan analisis sifat fisika yang meliputi Specific Gravity, Refractive Index nD20, Freezing Point, Smoke Point, Flash Point “Abel”, Aniline Point, Copper Strip Corrosion, Kinematic Viscosity dan Characterization KUOP. Crude Oil 99 dan Crude Oil 165 memiliki mutu yang baik serta memenuhi spesifikasi produk kerosin maupun produk avtur.


Author(s):  
Hengameh Bayat ◽  
Feng Cheng ◽  
Mostafa Dehghanizadeh ◽  
Nicholas Soliz ◽  
Catherine E Brewer ◽  
...  

1983 ◽  
Vol 23 (02) ◽  
pp. 265-271 ◽  
Author(s):  
J.H. Duerksen ◽  
L. Hsueh

Abstract The objectives of this investigation were to generate crude oil steam distillation data for the prediction of phase behavior in steamflood simulation and to correlate the steam distillation yields for a variety of crude oils. Thirteen steam distillation tests were run on 10 crude oils ranging in gravity from 9.4 to 37 deg. API (1.004 to 0.840 g/cm3). In each test the crude was steam distilled sequentially at about 220, 300, 400, and 500 deg. F (104, 149, 204, and 260 deg. C). The cumulative steam distillation yields at 400 deg. F (204 deg. C) ranged from about 20 to 55 vol%. Experimental results showed that crude oil steam distillation yields at steamflood conditions are significant, even for heavy oils. The effects of differences in steam volume throughput and steam temperature were taken into account when comparing yields for different crudes or repeat runs on the same crude. Steam distillation yields show a high correlation with crude oil API gravity and wax content. Introduction Steam distillation is an important steamflood oil recovery mechanism, especially in reservoirs containing light oils. Injected steam heats the formation and eventually forms a steam zone, which grows with continued steam injection. A fraction of the crude oil in the steam zone vaporizes into the steam phase according to the vapor pressures of the hydrocarbon constituents contained in the crude oil. The hydrocarbon vapor is transported through the steam zone by the flowing steam. Both the steam and hydrocarbon vapor condense at the steam front to form a hot-water zone and a hydrocarbon distillate bank. The vaporization, transport, and condensation of the hydrocarbon fractions is a dynamic process that displaces the lighter hydrocarbon fractions and generates a distillate bank that miscibly drives reservoir oil to producing wells. The effect of steam distillation on oil recovery has been investigated in several laboratory studies, steamf lood field tests, and in simulation studies. In a critical review of steam flood mechanisms, Wu discussed the steam distillation mechanism in detail. Wu and Brown reported steam distillation yields for six crude oils ranging from 9 to 36 deg. API (1.007 to 0.845 g/cm3). When plotted against their steam distillation correlation parameter, Vw/Voi (the ratio of collected steam condensate, Vw, and initial oil volume, Voi), the yields were independent of the porous medium used, steam-injection rate, and initial oil volume. For the crude oils tested, they concluded that changing the saturated steam pressure and temperature had an insignificant effect on yield, but superheating the steam from 471 to 600 deg. F (244 to 316 deg. C) significantly increased the yield. Wu and Elder reported steam distillation yields for 16 crude oils ranging from 12 to 40 deg. API (0.986 to 0.825 g/cm3). Yields ranged from 12 to 56% of initial oil volume at a distillation temperature and pressure of 380 deg. F and 200 psig (193 deg. C and 1.379 MPa). Yields at Vw/Voi = 15 were correlated with three parameters:simulated distillation temperature of the oil at 20% yield,oil viscosity, andoil API gravity. The simulated distillation obtained by gas chromatography closely approximates the true boiling-point distillation as determined by ASTM distillation. The simulated distillation temperature at 20% yield gave the closest correlation with steam distillation yield. SPEJ P. 265^


Sign in / Sign up

Export Citation Format

Share Document