Correlation of Crude Oil Steam Distillation Yields With Basic Crude Oil Properties

1983 ◽  
Vol 23 (06) ◽  
pp. 937-945 ◽  
Author(s):  
Ching H. Wu ◽  
Robert B. Elder

Abstract Steam distillation can occur in reservoirs during steam injection and in-situ combustion processes. To estimate the amount of vaporized oil caused by steam distillation, we established correlations of steam distillation yields with the basic crude oil properties. These correlations were based on steam distillation tests performed on 16 crude oils from various pans of the U.S. The gravity of oils varied from 12 to 40 deg. API [0.99 to 0.83 g/cm3]. The viscosity of oil ranged from 5 to 4,085 cSt [5 to 4085 mm /s] at 100 deg. F [38 deg. C]. The steam distillations were performed at a saturated steam pressure of 220 psia [1.5 MPa]. One oil sample was used in experiments to investigate the effect of steam pressure (220 to 500 psia [1.5 to 3.4 MPa]) on the steam distillation yield. The experiments were carried out to a steam distillation factor (Vw/Voi) of 20, with the factor defined as the cumulative volume of condensed steam used in distillation, Vw, divided by the initial volume of oil, Voi. At a steam distillation factor of 20, the distillation yields ranged from 13 to 57% of the initial oil volume. Several basic crude oil properties can be used to predict steam distillation yields reasonably well. A correlation using oil viscosity in centistokes at 100 deg. F [38 deg. C] can be used to predict the steam distillation yield within a standard error of 4.3 %. The API gravity can be used to estimate wields within 5.6%. A gas chromatographic analysis was made for each crude oil to obtain the component boiling points (simulated distillation temperatures). A correlation parameter was selected from the simulated distillation results that can be used to estimate the steam distillation yields within 4.5%. Introduction Steamflooding has been used commercially to recover heavy oils for several decades. Although it is considered a heavy-oil recovery process, it has been demonstrated to be an effective and commercially feasible process for recovering light oils. To enhance the effectiveness of the oil recovery process, it is important to fully understand and utilize the basic steamflooding mechanisms. Willman et al. investigated the mechanisms of steamflooding. They concluded that oil viscosity reduction, oil volume expansion, and steam distillation are the major mechanisms for oil recovery. Since then, more research has been done on all phases of steam injection. However, steam distillation and its ramifications on recovery have not been quantified fully because of lack of experimental data. Steam distillation can lower the boiling point of a water/oil mixture below the boiling point of the individual components. SPEJ P. 937^

1983 ◽  
Vol 23 (02) ◽  
pp. 265-271 ◽  
Author(s):  
J.H. Duerksen ◽  
L. Hsueh

Abstract The objectives of this investigation were to generate crude oil steam distillation data for the prediction of phase behavior in steamflood simulation and to correlate the steam distillation yields for a variety of crude oils. Thirteen steam distillation tests were run on 10 crude oils ranging in gravity from 9.4 to 37 deg. API (1.004 to 0.840 g/cm3). In each test the crude was steam distilled sequentially at about 220, 300, 400, and 500 deg. F (104, 149, 204, and 260 deg. C). The cumulative steam distillation yields at 400 deg. F (204 deg. C) ranged from about 20 to 55 vol%. Experimental results showed that crude oil steam distillation yields at steamflood conditions are significant, even for heavy oils. The effects of differences in steam volume throughput and steam temperature were taken into account when comparing yields for different crudes or repeat runs on the same crude. Steam distillation yields show a high correlation with crude oil API gravity and wax content. Introduction Steam distillation is an important steamflood oil recovery mechanism, especially in reservoirs containing light oils. Injected steam heats the formation and eventually forms a steam zone, which grows with continued steam injection. A fraction of the crude oil in the steam zone vaporizes into the steam phase according to the vapor pressures of the hydrocarbon constituents contained in the crude oil. The hydrocarbon vapor is transported through the steam zone by the flowing steam. Both the steam and hydrocarbon vapor condense at the steam front to form a hot-water zone and a hydrocarbon distillate bank. The vaporization, transport, and condensation of the hydrocarbon fractions is a dynamic process that displaces the lighter hydrocarbon fractions and generates a distillate bank that miscibly drives reservoir oil to producing wells. The effect of steam distillation on oil recovery has been investigated in several laboratory studies, steamf lood field tests, and in simulation studies. In a critical review of steam flood mechanisms, Wu discussed the steam distillation mechanism in detail. Wu and Brown reported steam distillation yields for six crude oils ranging from 9 to 36 deg. API (1.007 to 0.845 g/cm3). When plotted against their steam distillation correlation parameter, Vw/Voi (the ratio of collected steam condensate, Vw, and initial oil volume, Voi), the yields were independent of the porous medium used, steam-injection rate, and initial oil volume. For the crude oils tested, they concluded that changing the saturated steam pressure and temperature had an insignificant effect on yield, but superheating the steam from 471 to 600 deg. F (244 to 316 deg. C) significantly increased the yield. Wu and Elder reported steam distillation yields for 16 crude oils ranging from 12 to 40 deg. API (0.986 to 0.825 g/cm3). Yields ranged from 12 to 56% of initial oil volume at a distillation temperature and pressure of 380 deg. F and 200 psig (193 deg. C and 1.379 MPa). Yields at Vw/Voi = 15 were correlated with three parameters:simulated distillation temperature of the oil at 20% yield,oil viscosity, andoil API gravity. The simulated distillation obtained by gas chromatography closely approximates the true boiling-point distillation as determined by ASTM distillation. The simulated distillation temperature at 20% yield gave the closest correlation with steam distillation yield. SPEJ P. 265^


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4633 ◽  
Author(s):  
Oscar E. Medina ◽  
Yira Hurtado ◽  
Cristina Caro-Velez ◽  
Farid B. Cortés ◽  
Masoud Riazi ◽  
...  

This study aims to evaluate a high-performance nanocatalyst for upgrading of extra-heavy crude oil recovery and at the same time evaluate the capacity of foams generated with a nanofluid to improve the sweeping efficiency through a continuous steam injection process at reservoir conditions. CeO2±δ nanoparticles functionalized with mass fractions of 0.89% and 1.1% of NiO and PdO, respectively, were employed to assist the technology and achieve the oil upgrading. In addition, silica nanoparticles grafted with a mass fraction of 12% polyethylene glycol were used as an additive to improve the stability of an alpha-olefin sulphonate-based foam. The nanofluid formulation for the in situ upgrading process was carried out through thermogravimetric analysis and measurements of zeta potential during eight days to find the best concentration of nanoparticles and surfactant, respectively. The displacement test was carried out in different stages, including, (i) basic characterization, (ii) steam injection in the absence of nanofluids, (iii) steam injection after soaking with nanofluid for in situ upgrading, (iv) N2 injection, and (v) steam injection after foaming nanofluid. Increase in the oil recovery of 8.8%, 3%, and 5.5% are obtained for the technology assisted by the nanocatalyst-based nanofluid, after the nitrogen injection, and subsequent to the thermal foam injection, respectively. Analytical methods showed that the oil viscosity was reduced 79%, 77%, and 31%, in each case. Regarding the asphaltene content, with the presence of the nanocatalyst, it decreased from 28.7% up to 12.9%. Also, the American Petroleum Institute (API) gravity values increased by up to 47%. It was observed that the crude oil produced after the foam injection was of higher quality than the crude oil without treatment, indicating that the thermal foam leads to a better swept of the porous medium containing upgraded oil.


2021 ◽  
Vol 931 (1) ◽  
pp. 012002
Author(s):  
A Pituganova ◽  
I Minkhanov ◽  
A Bolotov ◽  
M Varfolomeev

Abstract Thermal enhanced oil recovery techniques, especially steam injection, are the most successful techniques for extra heavy crude oil reservoirs. Steam injection and its variations are based on the decrease in oil viscosity with increasing temperature. The main objective of this study is the development of advanced methods for the production of extra heavy crude oil in the oilfield of the Republic of Tatarstan. The filtration experiment was carried out on a bulk model of non-extracted core under reservoir conditions. The experiment involves the injection of slugs of fresh water, hot water and steam. At the stage of water injection, no oil production was observed while during steam injection recovery factor (RF) achieved 13.4 % indicating that fraction of immobile oil and non-vaporizing residual components is high and needed to be recovered by steam assisted EORs.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1009
Author(s):  
Luisana Cardona ◽  
Oscar E. Medina ◽  
Santiago Céspedes ◽  
Sergio H. Lopera ◽  
Farid B. Cortés ◽  
...  

This work focuses on evaluating the effect of the steam quality on the upgrading and recovering extra-heavy crude oil in the presence and absence of two nanofluids. The nanofluids AlNi1 and AlNi1Pd1 consist of 500 mg·L−1 of alumina doped with 1.0% in mass fraction of Ni (AlNi1) and alumina doped with 1.0% in mass fraction of Ni and Pd (AlNi1Pd1), respectively, and 1000 mg·L−1 of tween 80 surfactant. Displacement tests are done in different stages, including (i) basic characterization, (ii) waterflooding, (iii) steam injection at 0.5 quality, (iv) steam injection at 1.0 quality, (v) batch injection of nanofluids, and (vi) steam injection after nanofluid injection at 0.5 and 1.0 qualities. The steam injection is realized at 210 °C, the reservoir temperature is fixed at 80 °C, and pore and overburden pressure at 1.03 MPa (150 psi) and 5.51 MPa (800 psi), respectively. After the steam injection at 0.5 and 1.0 quality, oil recovery is increased 3.0% and 7.0%, respectively, regarding the waterflooding stage, and no significant upgrade in crude oil is observed. Then, during the steam injection with nanoparticles, the AlNi1 and AlNi1Pd1 increase the oil recovery by 20.0% and 13.0% at 0.5 steam quality. Meanwhile, when steam is injected at 1.0 quality for both nanoparticles evaluated, no incremental oil is produced. The crude oil is highly upgraded for the AlNi1Pd1 system, reducing oil viscosity 99%, increasing the American Petroleum Institute (API)° from 6.9° to 13.3°, and reducing asphaltene content 50% at 0.5 quality. It is expected that this work will eventually help understand the appropriate conditions in which nanoparticles should be injected in a steam injection process to improve its efficiency in terms of oil recovery and crude oil quality.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhanxi Pang ◽  
Peng Qi ◽  
Fengyi Zhang ◽  
Taotao Ge ◽  
Huiqing Liu

Heavy oil is an important hydrocarbon resource that plays a great role in petroleum supply for the world. Co-injection of steam and flue gas can be used to develop deep heavy oil reservoirs. In this paper, a series of gas dissolution experiments were implemented to analyze the properties variation of heavy oil. Then, sand-pack flooding experiments were carried out to optimize injection temperature and injection volume of this mixture. Finally, three-dimensional (3D) flooding experiments were completed to analyze the sweep efficiency and the oil recovery factor of flue gas + steam flooding. The role in enhanced oil recovery (EOR) mechanisms was summarized according to the experimental results. The results show that the dissolution of flue gas in heavy oil can largely reduce oil viscosity and its displacement efficiency is obviously higher than conventional steam injection. Flue gas gradually gathers at the top to displace remaining oil and to decrease heat loss of the reservoir top. The ultimate recovery is 49.49% that is 7.95% higher than steam flooding.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1975 ◽  
Author(s):  
Junrong Liu ◽  
Lu Sun ◽  
Zunzhao Li ◽  
Xingru Wu

CO2 flooding is an important method for improving oil recovery for reservoirs with low permeability. Even though CO2 could be miscible with oil in regions nearby injection wells, the miscibility could be lost in deep reservoirs because of low pressure and the dispersion effect. Reducing the CO2–oil miscibility pressure can enlarge the miscible zone, particularly when the reservoir pressure is less than the needed minimum miscible pressure (MMP). Furthermore, adding intermediate hydrocarbons in the CO2–oil system can also lower the interfacial tension (IFT). In this study, we used dead crude oil from the H Block in the X oilfield to study the IFT and the MMP changes with different hydrocarbon agents. The hydrocarbon agents, including alkanes, alcohols, oil-soluble surfactants, and petroleum ethers, were mixed with the crude oil samples from the H Block, and their performances on reducing CO2–oil IFT and CO2–oil MMP were determined. Experimental results show that the CO2–oil MMP could be reduced by 6.19 MPa or 12.17% with petroleum ether in the boiling range of 30–60 °C. The effects of mass concentration of hydrocarbon agents on CO2–oil IFT and crude oil viscosity indicate that the petroleum ether in the boiling range of 30–60 °C with a mass concentration of 0.5% would be the best hydrocarbon agent for implementing CO2 miscible flooding in the H Block.


2012 ◽  
Vol 594-597 ◽  
pp. 2451-2454
Author(s):  
Feng Lan Zhao ◽  
Ji Rui Hou ◽  
Shi Jun Huang

CO2is inclined to dissolve in crude oil in the reservoir condition and accordingly bring the changes in the crude oil composition, which will induce asphaltene deposition and following formation damage. In this paper, core flooding device is applied to study the effect of asphaltene deposition on flooding efficiency. From the flooding results, dissolution of CO2into oil leads to recovery increase because of crude oil viscosity reduction. But precipitated asphaltene particles may plug the pores and throats, which will make the flooding effects worse. Under the same experimental condition and with equivalent crude oil viscosity, the recovery of oil with higher proportion of precipitated asphaltene was relatively lower during the CO2flooding, so the asphltene precipitation would affect CO2displacement efficiSubscript textency and total oil recovery to some extent. Combination of static diffusion and dynamic oil flooding would provide basic parameters for further study of the CO2flooding mechanism and theoretical evidence for design of CO2flooding programs and forecasting of asphaltene deposition.


2019 ◽  
Vol 10 (3) ◽  
pp. 919-931 ◽  
Author(s):  
Sherif Fakher ◽  
Mohamed Ahdaya ◽  
Mukhtar Elturki ◽  
Abdulmohsin Imqam

Abstract Carbon dioxide (CO2) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during CO2 injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without CO2 in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying CO2 injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during CO2 injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during CO2 injection in different pore sizes in order to help reduce asphaltene-related problems that arise during CO2 injection in hydrocarbon reservoirs.


1972 ◽  
Vol 12 (02) ◽  
pp. 143-155 ◽  
Author(s):  
E.L. Claridge

Abstract A new correlation bas been developed for estimating oil recovery in unstable miscible five-spot pattern floods. It combines existing methods of predicting areal coverage and linear displacement efficiency and was used to calculate oil recovery for a series of assumed slug sizes in a live-spot CO2 slug-waterflood pilot test. The economic optimum slug size varies with CO2 cost; at anticipated CO2 costs the pilot would generate an attractive profit if performance is as predicted Introduction Selection of good field prospects for application of oil recovery processes other than waterflooding is often difficult. The principal reason is that other proposed displacing agents are far more costly proposed displacing agents are far more costly than water and usually sweep a lesser fraction of the volume of an oil reservoir (while displacing oil more efficiently from this fraction). Such agents must be used in limited amounts as compared with water; and this amount must achieve an appreciable additional oil recovery above waterflooding recovery. For these reasons, there is in general much less economic margin for engineering error in processes other than waterflooding. The general characteristics of the various types of supplemental recovery processes are well known, and adequate choices can be made of processes to be considered in more detail with respect to a given field. Comparative estimates must then be made of process performance and costs in order to narrow the choice. A much more detailed, definitive process-and-economic evaluation is eventually process-and-economic evaluation is eventually required of the chosen process before an executive decision can be made to commit large amounts of money to such projects. It is in the area between first choice and final engineering evaluation that this work applies. A areal cusping and vertical coning into producing wells. These effects can be seated by existing "desk-drawer" correlation which can confirm or deny the engineer's surmise that he has an appropriate match of recovery process and oil reservoir characteristics is of considerable value in determining when to undertake the costly and often manpower-consuming task of a definitive process-and-economic evaluation. process-and-economic evaluation. An examination of the nature of the developed crude oil resources in the U.S. indicates that the majority of the crude oil being produced is above 35 degrees API gravity and exists in reservoirs deeper than 4,000 ft. The combination of hydrostatic pressure on these oil reservoirs, the natural gas usually present in the crude oil in proportion to this pressure, the reservoir temperatures typically found, and the distribution of molecular sizes and types in the crude oil corresponding to the API gravity results in the fact that, in the majority of cases, the in-place crude oil viscosity was originally no more than twice that of water. A large proportion of these oil reservoirs have undergone pressure decline, gas evolution and consequent increase in crude oil viscosity. However, an appreciable proportion are still at such a pressure and proportion are still at such a pressure and temperature that miscibility can be readily attained with miscible drive agents such as propane or carbon dioxide, and the viscosity of the crude oil is such that the mobility of these miscible drive agents is no more than 50 time s that of the crude oil. Under these circumstances, a possible candidate situation for the miscible-drive type of process may exist. process may exist. Supposing that such a situation is under consideration, the next question is: what specific miscible drive process, and how should it be designed to operate? In some cases, the answer is clear: when the reservoir has a high degree of vertical communication (high permeability and continuity of the permeable, oil-bearing pore space in the vertical direction), then a gravity-stabilized miscible flood is the preferred mode of operation; and the particular drive agent or agents can be chosen on the basis of miscibility requirements, availability and cost. SPEJ P. 143


Sign in / Sign up

Export Citation Format

Share Document