scholarly journals Synergistic Effect of the Combination of Commercial Essential Oils with Standard Antibiotics: In vitro Evaluation

2020 ◽  
Vol 63 (3) ◽  
pp. 242-252
Author(s):  
Aneela Mehboob ◽  
Tanveer Abbas

The aim of this investigation was to determine the antibacterial activity of essential oils and  to assess the outcomes produced by the combinations of antibiotics and essential oils. To execute this research, gold standard and conventional methods were used. Antibacterial potency of five essential oils namely Citrus limon, Elettaria cardamomum, Lavandula angustifolia, Nigella sativa and Prunus dulcis were tested against Escherichia coli, Serratia fonticola, Serratia liquefaciens, Citrobacter freundii and Staphylococcus aureus recouped from street foods of Karachi. Among five of them, Citrus limon and Lavandula angustifolia were the most potent essential oils showing highest antibacterial activity in their undiluted form with the exception of Staphylococcus aureus but their mix at different concentrations successfully inhibited the growth of Staphylococcus aureus and Serratia fonticola. Synergistic outcomes were achieved against all the tested bacterial strains from the mix of essential oils and antibiotics, however antagonistic results were also obtained. This exploration underpins the application of essential oils alone and in combinations with antimicrobial agents to improve the affectability of ineffective drugs and aides in the advancement of new antimicrobial drugs to treat bacterial infections utilizing therapeutic plants.    

2020 ◽  
Vol 13 (12) ◽  
pp. 469
Author(s):  
Sergey N. Lavrenov ◽  
Elena B. Isakova ◽  
Alexey A. Panov ◽  
Alexander Y. Simonov ◽  
Viktor V. Tatarskiy ◽  
...  

The wide spread of pathogens resistance requires the development of new antimicrobial agents capable of overcoming drug resistance. The main objective of the study is to elucidate the effect of substitutions in tris(1H-indol-3-yl)methylium derivatives on their antibacterial activity and toxicity to human cells. A series of new compounds were synthesized and tested. Their antibacterial activity in vitro was performed on 12 bacterial strains, including drug resistant strains, that were clinical isolates or collection strains. The cytotoxic effect of the compounds was determined using an test with HPF-hTERT (human postnatal fibroblasts, immortalized with hTERT) cells. The activity of the obtained compounds depended on the carbon chain length. Derivatives with C5–C6 chains were more active. The minimum inhibitory concentration (MIC) of the most active compound on Gram-positive bacteria, including MRSA, was 0.5 μg/mL. Compounds with C5–C6 chains also revealed high activity against Staphylococcus epidermidis (1.0 and 0.5 μg/mL, respectively) and moderate activity against Gram-negative bacteria Escherichia coli (8 μg/mL) and Klebsiella pneumonia (2 and 8 μg/mL, respectively). However, they have no activity against Salmonella cholerasuis and Pseudomonas aeruginosa. The most active compounds revealed higher antibacterial activity on MRSA than the reference drug levofloxacin, and their ratio between antibacterial and cytotoxic activity exceeded 10 times. The data obtained provide a basis for further study of this promising group of substances.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mohammed Dalli ◽  
Salah-eddine Azizi ◽  
Hind Benouda ◽  
Ali Azghar ◽  
Maroua Tahri ◽  
...  

Nigella sativa L. (NS) and its volatile compounds are well known for their broad spectrum of effects. This study aimed to investigate the variability of the chemical composition and the in vitro antibacterial activity of five essential oils (Eos) originated from Morocco, Saudi Arabia, Syria, India, and France. These five samples were grown under different edaphic and climatic conditions. The agar diffusion method and microdilution method in 96-well plates were used to test the sensitivity of multidrug-resistant strains clinically isolated from patients (methicillin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii), for the determination of the minimum inhibitory concentration and bactericidal concentration. Among all the investigated Eos, the monoterpenes were highly present in the chemical composition. Moroccan, Saudi Arabian, and Syrian seeds were characterized by the presence α-phellandrene (20.03–30.54%), β-cymene (12.31–23.82 %), and 4−caranol (9.77–14.27%). The Indian seeds were rich with 4-caranol (18.81%), β-cymene (14.22%), α-phellandrene (10.58%), and β-chamigrene (9.54%), while France NS was rich with estragole (20.22%) and D-limonene (14.63%). The minimum inhibitory (MIC) and bactericidal concentration (MBC) obtained for the four Eos (with the exception of France because of the low yield) tested were ranging from 3 to 40 μl/ml. Gram-positive (+) bacteria were slightly sensitive to the Eos tested than the Gram-negative (−) bacteria. The results of this study showed that the Eos of NS seeds show interesting antibacterial activity which could be associated to the existence of different bioactive compounds. Indeed, these compounds can be used for preventive or curative purposes in the face of the noncontrolled emergence of resistance to antibiotics.


2021 ◽  
Vol 8 (9) ◽  
pp. 181
Author(s):  
Mehdi Soltani ◽  
Bernardo Baldisserotto ◽  
Seyed Pezhman Hosseini Shekarabi ◽  
Shafigh Shafiei ◽  
Masoumeh Bashiri

Lactococcosis, particularly that caused by Lactococcus garvieae, is a major re-emerging bacterial disease seriously affecting the sustainability of aquaculture industry. Medicinal herbs and plants do not have very much in vitro antagonism and in vivo disease resistance towards lactococcosis agents in aquaculture. Most in vitro studies with herbal extractives were performed against L. garvieae with no strong antibacterial activity, but essential oils, especially those that contain thymol or carvacrol, are more effective. The differences exhibited by the bacteriostatic and bactericidal functions for a specific extractive in different studies could be due to different bacterial strains or parts of chemotypes of the same plant. Despite essential oils being shown to have the best anti-L. garvieae activity in in vitro assays, the in vivo bioassays required further study. The extracts tested under in vivo conditions presented moderate efficacy, causing a decrease in mortality in infected animals, probably because they improved immune parameters before challenging tests. This review addressed the efficacy of medicinal herbs to lactococcosis and discussed the presented gaps.


2018 ◽  
Vol 72 ◽  
pp. 101-107
Author(s):  
Natalia Łubowska ◽  
Lidia Piechowicz

The ability to form biofilm is an important virulence factor of many microorganisms. Infections involving biofilms account for approx. 65% of all human infections. Biofilms may develop on intravascular catheters or implanted devices such as prosthetic heart valves. Implanted devices are covered by biofilm and become reservoirs of microorganisms which can be a cause of persistent infections (endocarditis, deep tissue abscesses, septic arthritis, and osteomyelitis). Treatment of infections caused by biofilm-growing cells is linked to a high risk of failure due to an extreme resistance to antimicrobial agents and increased capacity to evade the immune responses. A large number of biofilm-associated infections involve Staphylococcus aureus. Treatment of staphylococcal infections is a great challenge for clinicians because of the presence of various mechanisms of resistance to antibiotics in S. aureus, for example methicillin resistance and biofilm production. Therapeutic difficulties related with antibiotic-resistant bacteria and limitations in research on new antimicrobials were the reasons that nearly 100 years after discovery, bacteriophages caught the attention of scientists around the world as a new therapeutic option for bacterial infections. Numerous in vitro studies on S. aureus strains showed that phages can both prevent biofilm formation and contribute to the elimination of bacteria from the mature biofilm structure. The major role in biofilm eradication play depolymerases produced by some phages which facilitate their penetration into the inner layers of biofilm by disturbing the biofilm structure. This leads to the conclusion that bacteriophages treatment might become a new strategy in the prevention and eradication of infectious bacterial biofilms, including these formed by S. aureus.


2019 ◽  
Vol 49 (6) ◽  
Author(s):  
Guerino Bandeira Junior ◽  
Carine de Freitas Souza ◽  
Matheus Dellaméa Baldissera ◽  
Sharine Nunes Descovi ◽  
Bibiana Petri da Silveira ◽  
...  

ABSTRACT: The use of natural products, such as essential oils (EOs), is a potential novel approach to treat fish bacterial infections with a lower risk of developing resistance. There has been a number of studies reporting the activity of EOs as those obtained from the species Achyrocline satureioides, Aniba parviflora, Aniba rosaeodora, Anthemis nobilis, Conobea scoparioides, Cupressus sempervirens, Illicium verum, Lippia origanoides, and Melaleuca alternifolia against bacteria. However, there are few studies investigating the effect of these EOs against fish bacteria. Therefore, the aim of this study was to evaluate the in vitro antibacterial activity of EOs against the following fish bacteria, Aeromonas hydrophila, Citrobacter freundii, and Raoultella ornithinolytica. Additionally, the in vivo antibacterial activity of the EO L. origanoides was evaluated against experimentally induced A. hydrophila infection of silver catfish (Rhamdia quelen). The EO of L. origanoides was chosen as it showed the highest in vitro antibacterial activity, with minimum inhibitory concentrations ranging from 0.2 to 0.8 mg mL-1. This EO also presented a therapeutic success of 58.33%, on a 30 day A. hydrophila infection. Therefore, we suggested that the EO of L. origanoides may be a viable alternative as a treatment for A. hydrophila infection.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 730
Author(s):  
Nicolás Gómez-Sequeda ◽  
Marlon Cáceres ◽  
Elena E. Stashenko ◽  
William Hidalgo ◽  
Claudia Ortiz

The emergence of multidrug resistant microorganisms represents a global challenge due to the lack of new effective antimicrobial agents. In this sense, essential oils (EOs) are an alternative to be considered because of their anti-inflammatory, antiviral, antibacterial, and antibiofilm biological activities. Therefore, multiple efforts have been made to consider the potential use of EOs in the treatment of infections which are caused by resistant microorganisms. In this study, 15 EOs of both Colombian and introduced aromatic plants were evaluated against pathogenic strains of E. coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA) in planktonic and sessile states in order to identify relevant and promising alternatives for the treatment of microbial infections. Forty different compounds were identified in the 15 EO with nine of them constituted mainly by oxygenated monoterpenes (OM). EOs from Lippia origanoides, chemotypes thymol, and carvacrol, displayed the highest antibacterial activity against E. coli O157:H7 (MIC50 = 0.9 and 0.3 mg/mL, respectively) and MRSA (MIC50 = 1.2 and 0.6 mg/mL, respectively). These compounds from EOs had also the highest antibiofilm activity (inhibition percentage > 70.3%). Using scanning electron microscopy (SEM), changes in the size and morphology of both bacteria were observed when they were exposed to sub-inhibitory concentrations of L. origanoides EO carvacrol chemotype. EOs from L. origanoides, thymol, and carvacrol chemotypes represented a viable alternative for the treatment of microbial infections; however, the Selectivity Index (SI ≤ 3) indicated that it was necessary to study alternatives to reduce its in vitro cytotoxicity.


Author(s):  
Bhavani J ◽  
Sunil Kumar Prajapati ◽  
Ravichandran S

Opportunistic bacterial infections are common in the various parts of human body. In recent years bacterial species have shown resistance against a number of synthetic drugs. This study measured the antibacterial activity of bacterial strains against five common pathogenic bacteria related strains. Cup plate method and two fold serial dilution method were used to evaluated by antibacterial activity by the help of different bacterial related strains. The results revealed that Cisplatin (CIP) using natural as a polymer showed a minimum inhibitory concentration (MIC) at 250 mg/ml to 500 mg/ml of the broth against all bacterial strains. CIP using natural as a polymer was prepared different doses1000 μg/ml and 2000 μg/ ml and measured zone of inhibition dose dementedly reduced when compared to standard. The CIP using natural as a polymer exhibited strong anti-bacterial activity against five different species of bacteria and this may be attributed to various active components. Our research work has been indicated Nanoparticles containing CIP using natural as a polymer formulated for the enhanced anti-cancer activity through antimicrobial mechanism. 


2018 ◽  
Vol 16 (2) ◽  
pp. 160-173 ◽  
Author(s):  
Mir Mohammad Masood ◽  
Mohammad Irfan ◽  
Shadab Alam ◽  
Phool Hasan ◽  
Aarfa Queen ◽  
...  

Background: 2,4-disubstituted-1,3-thiazole derivatives (2a–j), (3a–f) and (4a–f) were synthesized, characterized and screened for their potential as antimicrobial agents. In the preliminary screening against a panel of bacterial strains, nine compounds showed moderate to potent antibacterial activity (IC50 = 13.7-90.8 μg/ml). </P><P> Methods: In the antifungal screening, compound (4c) displayed potent antifungal activity (IC50 = 26.5 &#181;g/ml) against Candida tropicalis comparable to the standard drug, fluconazole (IC50 = 10.5 &#181;g/ml). Based on in vitro antimicrobial results, compounds 2f, 4c and 4e were selected for further pharmacological investigations. Hemolytic activity using human red blood cells (hRBCs) and cytotoxicity by MTT assay on human embryonic kidney (HEK-293) cells revealed non-toxic nature of the selected compounds (2f, 4c and 4e). To ascertain their possible mode of action, docking studies with the lead inhibitors (2f, 4c and 4e) were performed using crystal structure coordinates of bacterial methionine aminopeptidases (MetAPs), an enzyme involved in bacterial protein synthesis and maturation. Results: The results of in vitro and in silico studies provide a rationale for selected compounds (2f, 4c and 4e) to be carried forward for further structural modifications and structure-activity relationship (SAR) studies against these bacterial infections. Conclusion: The study suggested binding with one or more key amino acid residues in the active site of Streptococcus pneumoniae MetAP (SpMetAP) and Escherichia coli MetAP (EcMetAP). In silico physicochemical properties using QikProp confirmed their drug likeliness.


Sign in / Sign up

Export Citation Format

Share Document