scholarly journals Geospatial Mapping, Environmetrics and Indexing Approach for a Tropical River Sediment in Southern Nigeria

Author(s):  
Osikemekha Anthony Anania ◽  
John Ovie Olomukoro ◽  
Alex Ajeh Enuneku

The objectives of this study are to assess the trace and heavy metals pollution in the sediments of Ossiomo river, using geospatial mapping, environmetrics and ecological risk indices. The results from the descriptive statistics showed that there was significant difference (P<0.05) of the mean values of Fe, Mn, Cu, Cr, Cd, Pb, Ni and V. A posterior analysis using Duncan multiple regression analysis showed that stations 2 and 3 were significantly different from stations 1 and 4. While, there was no significant difference (P>0.05) in the mean values of Zn across the stations. The results of the relationship of the metals revealed a negative correlation between Fe and Mn with the other metals correspondingly. The results of the Kriging interpolation indicated a strong bull eye colour for stations 2 and 3 (6.42), while stations 1 and 4 were minimal (1.4). The results of the geospatial mapping indicated Fe, Zn and Mn to be the most dominant metals across the stations. The results of the PCA (principal component analysis) yielded 16 variables under 9 components with Eigenvalues >1 in components 1- 6 and these variables explained 99.99 % of the total variance in the sediment. The results of the degree of suitability and sphericity of the PCA revealed a high significant difference at P<0.001. The results of the potential ecological risk index values were very high in station 2 (824.30) and 3 (802.11) correspondingly. That of index of geo-accumulation was generally low (< 2). The findings from this study generally revealed the source apportionment of the trace and heavy metals to come from anthropogenic influences such as farming; fertilizers. Sustainable agriculture is highly recommended in order to reduce the impacts of anthropogenic activities, deterioration of the ecosystem and possible death of the life forms in this watercourse.  

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 410
Author(s):  
Mohammad Abdus Salam ◽  
Mohammad Ashraful Alam ◽  
Sulav Indra Paul ◽  
Fatama Islam ◽  
Dinesh Chandra Shaha ◽  
...  

This study aimed to determine the levels and possible sources of heavy metals (HMs) in the sediments of Chalan beel (a large lake-like aquatic ecosystem) area located in the northwestern part of Bangladesh. The mean concentrations (mg kg−1) of two HMs, Cd (6.22) and Pb (51.39) exceeded the world normal averages (WNA), whereas the mean concentrations (mg kg−1) of Ni (60.46), Zn (10.75), Mn (8.64) and Cu (4.71) were below the WNA. The sediments showed significant enrichment with Cd, Pb and Ni in the studied area. The geo-accumulation index values of Cd (3.72) and Pb (0.76) were significantly higher in the sediments. The contamination factor and potential ecological risk index values of Cd and Pb revealed that Chalan beel was extremely and moderately contaminated by these heavy metals, respectively. Analysis of dye complexes used in handlooms around the Chalan beel areas revealed that mean concentrations of Cd and Pb exceeded the WNA. Furthermore, analyses of principal component, cluster and correlation matrix indicated that the presence of the higher levels of Cd and Pb in the sediments might be linked to various anthropogenic activities like discharged dyes into the beel water from the nearby handloom dyeing factories.


The study assessed the ecological risk and polluting load of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in surface soils within Bori Urban. The composite soil samples collected from different locations were prepared and atomic absorption spectrophotometer (AAS) was used for the analysis of the heavy metals. From the results of the analysis, the mean concentrations (mg/kg) of the heavy metals decreased in the order Cu (37.42) > Ni (34.06) > Cr (28.66) > Zn (7.75) >Pb (2.03) > Cd (0.89). The mean concentrations of Cd, Cu, and Ni were above USEPA soil guidelines and world unpolluted soil average, while those of Pb and Zn were below. The mean concentrations of the heavy metals from the study locations were all above that of the control location. The findings indicated that the urban soils of the study were loaded with heavy metals due to anthropogenic activities. The anthropogenic percentage input was in the range of 63.92 - 89.13 above 50% indicating anthropogenic origin of the heavy metals in soils of the study area. The results of ecological risk index (Er) indicated that Cd with Er (467.40) contributed up to 94.51% to the potential ecological risk index (RI) while Zn (0.78) contributed 0.16%. The heavy metals under study posed highly strongly potential ecological risk with RI value of 494.56 to the Bori urban soil due to anthropogenic activities. The ANOVA result of FCal 6.42 > [F(5.30) = 2.53, P< 0.05)] revealed significant differences between the soil sample mean values due to different anthropogenic pollution sources with different loads of heavy metals as pollutants. The Omega Squared (w2) value of 0.52 > 0.14 showed very strong interactive relationship among the heavy metals to bring about high level of ecological potential risk of the urban soils in the study area. Based on the findings, the surface soils have elevated load of heavy metals thereby posing ecological potential risk to Bori urban soils. Therefore, there should be periodic monitoring and environmental audit by relevant authorities to ensure good soil quality of Bori urban soil. Keywords: Potential ecological risk, pollution load, Bori Urban, Anthropogenic Percentage input, contamination Factor.


Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
Xiaomei Su ◽  
Hong Ling ◽  
Dan Wu ◽  
Qingju Xue ◽  
Liqiang Xie

The contamination of heavy metals (Pb, Cr, Hg, Cd, Ni, Cu, Zn, As, and Sb) in the sediments were investigated in Lake Yangcheng, a eutrophic lake in China. Results showed that the average concentrations of each metal in the surface sediments generally exceeded their corresponding background values. Higher values were observed in deeper zones, supporting the retention and accumulation of heavy metals in the core sediments. The spatial distributions of metal averages, pollution load index (PLI), and combined ecological risk index (RI) revealed that ecological risks were highest in the west lake, followed by middle lake, and were lowest in the east section. For the temporal variations of metal contents, the highest concentration was usually observed in the winter. However, the seasonal dynamics of Hg showed a different pattern with higher values in the autumn and lower values in the winter. According to contamination factor (CF), the Hg and Sb contaminations were considerable, while the other metals were moderate contamination. In terms of geoaccumulation index (Igeo) values, sediments were moderately–heavily polluted by Sb and moderately polluted by Hg, Cd, and Ni. Meanwhile, Hg exhibited a considerable health risk, while Cd and Sb were moderate risks, based on single ecological risk index (Er) values. Significant positive correlations among heavy metals and principal component analysis (PCA) indicated that anthropogenic activities were major sources. The source of Sb might be different from other metals, with industrial discharge as the main loading. This study highlighted the urgency of taking measures to prevent Hg, Sb, and Cd pollutions in Lake Yangcheng, especially the west region of this lake.


2021 ◽  
pp. 1077-1087
Author(s):  
Lina F.D. AL-Heety ◽  
Omer M. Hasan ◽  
Emad A. Mohammed Salih Al-Heety

     This study aims to evaluate the concentration of the heavy metals (Co, Cd, Cr, Cu, Ni, Pb, and Zn) and their ecological risk in soils adjacent to the power generators of Ramadi city, Iraq. The soil samples were collected from a depth of 20cm. The obtained results showed that the mean concentrations of heavy metals (HMs) are ranked as in the following order: Cr (360.90mg/kg) > Ni (283.65mg/kg) > Zn (190.96mg/kg) > Pb (130.75 mg/kg) > Cu (36.54 mg/kg) > Co (16.62 mg/kg) > Cd (2.55 mg/kg). The mean values of HMs concentration exceed the international guidelines. The result of correlation matrix analysis at P £ 0.05 showed significant correlations between the concentrations of HMs. These correlations are interpreted in the context of a common source of pollution and/or common origin. Results of the potential ecological risk factor assessment of metal i (Eir) in soil adjacent to the power generators  of Ramadi city showed that the Eir values take the following descending order: Ni (354.56, very severe) > Cd (255.31, severe) , Co (207.77, severe) > Zn (88.69, heavy) > Cu (25.73, light) > Cr (17.43, light) > Pb (12.0, light). The potential ecological risk index (RI) values are classified as severe ecological risk for all studied heavy metals. This study provides the environmental protection managers and decision-makers with important information about the risk of using electrical generators in residential neighborhoods.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Saheed Adekunle Ganiyu ◽  
Abimbola Temitope Oyadeyi ◽  
Azeem Adedeji Adeyemi

AbstractThis study has been conducted to appraise the concentrations of selected heavy metals and total dissolved solids (TDSs) in the drinking water from shallow wells in parts of Ibadan metropolis, southwest Nigeria. Fifteen (15) water samples were collected from three representative residential locations [traditional core area (TCA), peri-urban area (PUA), and urban area (UA)] for geochemical analysis. Heavy metals and TDS were analyzed with the aid of atomic absorption spectrophotometer and calibrated meter, respectively. The mean concentration (mg/L) of Zn, Pb Mn, Fe, and Cd has been 3.930, 0.658, 0.0304, 1.698, and 0.501, respectively, and as a consequence, the order of abundance of studied metals was Zn > Fe > Pb > Cd > Mn. Concentrations of Zn, Fe, Pb, and Cd were higher than recommended standards in 60%, 86.7%, 100%, and 100% of groundwater samples, respectively. However, at all points tested, the mean concentrations of Mn and TDS in water samples lie within the safe limits set by World Health Organization. The evaluation of geoaccumulation index (Igeo), enrichment factor (EF), and contamination factor suggests that representative water samples were low-to-moderate contamination. The potential ecological risk index advocates low-to-moderate ecological risk in TCA and PUA, while it demonstrated exclusive “moderate” risk in UA. Further, the range of pollution load index (PLI) (0.55–1.32) in both TCA and PUA shows nil-to-moderate pollution status, while PLI values > 1 in UA indicate moderate contaminated state. The degree of contamination in groundwater showed the following trends: UA > TCA > PUA in the study area. Moreover, the results of EF and quantification of contamination of analyzed metals in water samples indicate geogenic and anthropogenic inputs. The contribution of studied metals to the incidence of non-cancer risk via oral intake within the residential sites follows the order: cadmium > lead > zinc > iron > manganese. The hazard index as a result of ingested heavy metals for the three population classes surpasses the acceptable range in the order of infant < child < adult. Cadmium and lead made considerable impact to the estimation of cancer risk in the study area for the three human population categories. Factor analysis extracted only one component that explained 94.64% of the entire variance, while cluster analysis identified three distinct groups based on similar water quality characteristics. Based on the findings of the study, awareness programs toward protecting the shallow groundwater sources should be launched, encouraged, and sustained. Moreover, the study suggests better hygienic practices and pre-treatment of contaminated water before consumption.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 431
Author(s):  
Liangliang Huang ◽  
Saeed Rad ◽  
Li Xu ◽  
Liangying Gui ◽  
Xiaohong Song ◽  
...  

This research has focused on the source identification, concentration, and ecological risk assessment of eight heavy metals in the largest karst wetland (Huixian) of south China. Numerous samples from superficial soil and sediment within ten representative landuse types were collected and examined, and the results were analyzed using multiple methods. Single pollution index (Pi) results were underpinned by the Geoaccumulation index (Igeo) method, in which Cd was observed as the priority pollutant with the highest contamination degree in this area. As for the most polluted landuse type, via applying Nemerow’s synthetical contamination index (PN) and Potential ecological risk index (RI), the river and rape field posed the highest ecological risks, while moderate for the rest. To quantify the drivers of the contaminants, a principal component analysis (PCA) was carried out and weathering of the watershed’s parent carbonate rocks was found to be the main possible origin, followed by anthropogenic sources induced by agricultural fertilizer. Considering the impacts of these potentially toxic elements on public health, the results of this study are essential to take preventive actions for environmental protection and sustainable development in the region.


2017 ◽  
Vol 64 (2) ◽  
pp. 111-126
Author(s):  
Abdul-Rahman Dirisu ◽  
John Ovie Olomukoro ◽  
Ifeanyi Maxwell Ezenwa

AbstractThis study assessed the physico-chemical status of sediments in the Agbede Wetlands with the aim to create a reference archive for the Edo North catchment and to further identify the characteristics mostly influenced by the natural and anthropogenic activities going on at the watershed. Nutrients, zinc, nickel and lead were identified to be mostly of anthropogenic origin, while alkali metals and alkaline earth metals were from both anthropogenic and natural sources. The clustering of stations 1 and 4 indicates that the sediment quality in the lentic systems was not completely excluded from the lotic system, suggesting that principal component analysis (PCA) and cluster analysis (CA) techniques are invaluable tools for identifying factors influencing the sediment quality. The mean values of the particle size distribution were in the following order across the ecosystems: sand (61.86–80.53%) > silt (9.75–30.34%) > clay (7.83–13.89%). The contamination of the water bodies was primarily derived from agricultural run-offs and through geochemical weathering of the top soils. Therefore, our analysis indicates that the concentrations of cations, anions and nutrients in the sediments of the lotic and lentic ecosystems in Agbede Wetlands are not at an alarming level.


2020 ◽  
Vol 10 (25) ◽  
Author(s):  
Temitope Ayodeji Laniyan ◽  
Adeniyi JohnPaul Adewumi

Background. Exposure to heavy metals emanating from cement production and other anthropogenic activities can pose ecological risks. Objectives. A detailed investigation was carried out to assess the contamination and ecological risk of heavy metals associated with dust released during cement production. Methods. Sixty samples, including 30 soils and 30 plants, were collected around Lafarge Cement Production Company. Control samples of soil and plants were collected in areas where human activities are limited. Samples were dried, sieved (for soil; 65 μm), packaged and analyzed using inductively coupled plasma mass spectrometry at Acme Laboratory in Canada. Results. The average concentration of heavy metals in soils of the area are: copper (Cu): 41.63 mg/kg; lead (Pb): 35.43 mg/kg; zinc (Zn): 213.64 mg/kg; chromium (Cr): 35.60 mg/kg; cobalt (Co): 3.84 mg/kg and nickel (Ni): 5.13 mg/kg. Concentrations of Cr in soils were above the recommended standards, while other metals were below recommended limits. The average concentrations of heavy metals in plants were: Cu: 26.32 mg/kg; Pb: 15.46 mg/kg; Zn: 213.94 mg/kg; Cr: 30.62 mg/kg; Co: 0.45 mg/kg and Ni: 3.77 mg/kg. Levels of heavy metals in plants were all above international limits. Geo-accumulation of metals in soils ranged between −0.15 and 6.32, while the contamination factor ranged between 0.53 and 119.59. Ecological risk index of heavy metals in soils ranged between 49.71 and 749. Discussion. All metals in soils of the study area except for Cr were below the allowable limits, while the levels of metals in plants were above the permissible limits. Levels of heavy metals reported in this study were higher than those from similar cement production areas. Soils around the Ewekoro cement production area were low to extremely contaminated by toxic metals. Cement production, processing, transportation in conjunction with the abandoned railway track in the area greatly contribute to the high degree of contamination observed in the area. Metal transfers from soil to plant are a common phenomenon. The metals pose low to considerable ecological risk. Conclusions. Anthropogenic sources, especially cement processing activities, release heavy metals which leads to progressive pollution of the environment and poses high ecological risk. Competing Interests. The authors declare no competing financial interests


2018 ◽  
Vol 6 (1) ◽  
pp. 108 ◽  
Author(s):  
Ram Proshad ◽  
Md. Saiful Islam ◽  
Tapos Kormoker

This study was conducted to assess the ecological risk of heavy metals in soils collected from the industrial vicinity of Tangail district in Bangladesh. In this study, the levels of six heavy metals namely chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd), and lead (Pb) in 15 sampling sites around the industrial vicinity of Tangail district in Bangladesh were assessed. The mean concentration of Cr, Ni, Cu, As, Cd and Pb in studied soils were 11.56, 23.92, 37.27, 6.11, 2.01, and 17.46 mg/kg, respectively. Certain indices, including the enrichment factor (EF), contamination factor (Cif), geoaccumulation index (Igeo), pollution load index (PLI), toxic unit analysis, and principal component analysis (PCA) were used to assess the ecological risk. The enrichment factor of all the studied metals for all sampling sites were in the descending order of Cd > Cu > As > Pb >Ni > Cr. The contamination factor values revealed that the studied soils were highly impacted by Cd. The pollution load index (PLI) values of Cd were higher than 1, indicating the progressive deterioration of soil due to Cd contamination. In the context of potential ecological risk (PER), soils from all sampling sites showed moderate to very high potential ecological risk.


2018 ◽  
Vol 10 (9) ◽  
pp. 3115 ◽  
Author(s):  
Li Hua ◽  
Xue Yang ◽  
Yajun Liu ◽  
Xiuli Tan ◽  
Yong Yang

Daye is a city in China known for its rich mineral resources, with a history of metal mining and smelting that dates back more than 3000 years. To analyze the spatial distribution patterns, ecological risk, and sources of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) in soils, 213 topsoil samples were collected in the main urban area of Daye in September 2016. The mean concentrations of Cd, Cu, Pb, and Zn were higher than the corresponding background values, with the mean concentration of Cd being almost seven times its background value. Spatially, the high concentrations of Cd, Mn, Pb, and Zn were mainly concentrated in the southeastern part of the region due to nonferrous metal mining and smelting. However, the high concentrations of Co and Cu were concentrated in the central part of the study area, resulted from copper mining and smelting. The data of the geoaccumulation index showed that the contamination levels ranged from no pollution (Co, Cr, Mn, and Ni) to heavy contamination (Cd, Cu, and Pb). Ecological risk assessment showed that Cd posed a high, serious, and even severe ecological risk in 53.78% of the area of Daye. According to the results of the principal component analysis, mineral exploitation and smelting involving a variety of minerals (ES_M), mining exploitation, and smelting of copper ore (ES_C), and natural sources are the three main sources of heavy metals in these soils. Furthermore, the absolute principal component scores showed that 69.21% and 23.17% of the heavy metal concentrations were ascribed to ES_M and ES_C, respectively.


Sign in / Sign up

Export Citation Format

Share Document