scholarly journals Review of Sustainable Energies Use in Greenhouses in Greece

2018 ◽  
Vol 5 (4) ◽  
pp. 35
Author(s):  
John Vourdoubas

Greenhouses consume large amounts of energy compared with other agricultural activities contributing to environmental pollution. However the current advances in sustainable energy technologies allow the use of benign energy sources for heat and power generation in them. Various renewable and high efficiency energy technologies are currently used in Greece or could be used in the near future in them. The technologies are mature, reliable and cost-effective. Among them the direct geothermal energy, solid biomass, solar-PV, waste heat re-use and co-generation of heat and power. Their use in small or larger greenhouses reduces the environmental pollution due to fossil fuels use, lowers the dependence on imported fuels, promote investments and create jobs in the local societies. Currently modern hydroponic greenhouses in northern Greece use co-generation of heat and power systems fuelled with natural gas. Heat is used in the greenhouses and the generated power is fed into the grid. Others utilize direct geothermal fluids for space heating. Solid biomass is also used for heating them. All of them can cover all the heating needs in greenhouses. Industrial rejected heat from lignite fired power plants in northern Greece could be easily used in the future for heating them. At the same time the high solar irradiance allows the use of solar photovoltaic (PV) systems for power generation in them. Further integration of sustainable energies in greenhouses in Greece requires the governmental support both in the form of financial subsidies and in removing the existing barriers preventing their use.

MRS Bulletin ◽  
2006 ◽  
Vol 31 (3) ◽  
pp. 188-198 ◽  
Author(s):  
Terry M. Tritt ◽  
M. A. Subramanian

AbstractHigh-efficiency thermoelectric (TE) materials are important for power-generation devices that are designed to convert waste heat into electrical energy.They can also be used in solid-state refrigeration devices.The conversion of waste heat into electrical energy may play an important role in our current challenge to develop alternative energy technologies to reduce our dependence on fossil fuels and reduce greenhouse gas emissions.An overview of various TE phenomena and materials is provided in this issue ofMRS Bulletin. Several of the current applications and key parameters are defined and discussed.Novel applications of TE materials include biothermal batteries to power heart pacemakers, enhanced performance of optoelectronics coupled with solid-state TE cooling, and power generation for deep-space probes via radioisotope TE generators.A number of different systems of potential TE materials are currently under investigation by various research groups around the world, and many of these materials are reviewed in the articles in this issue.These range from thin-film superlattice materials to large single-crystal or polycrystalline bulk materials, and from semiconductors and semimetals to ceramic oxides.The phonon-glass/electron-crystal approach to new TE materials is presented, along with the role of solid-state crystal chemistry.Research criteria for developing new materials are highlighted.


Author(s):  
Tong Xing ◽  
Qingfeng Song ◽  
Pengfei Qiu ◽  
Qihao Zhang ◽  
Ming Gu ◽  
...  

GeTe-based materials have a great potential to be used in thermoelectric generators for waste heat recovery due to their excellent thermoelectric performance, but their module research is greatly lagging behind...


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1143-1151 ◽  
Author(s):  
Karol Sztekler ◽  
Wojciech Kalawa ◽  
Sebastian Stefanski ◽  
Jaroslaw Krzywanski ◽  
Karolina Grabowska ◽  
...  

At present, energy efficiency is a very important issue and it is power generation facilities, among others, that have to confront this challenge. The simultaneous production of electricity, heat and cooling, the so-called trigeneration, allows for substantial savings in the chemical energy of fuels. More efficient use of the primary energy contained in fuels translates into tangible earnings for power plants while reductions in the amounts of fuel burned, and of non-renewable resources in particular, certainly have a favorable impact on the natural environment. The main aim of the paper was to investigate the contribution of the use of adsorption chillers to improve the energy efficiency of a conventional power plant through the utilization of combined heat and power waste heat, involving the use of adsorption chillers. An adsorption chiller is an item of industrial equipment that is driven by low grade heat and intended to produce chilled water and desalinated water. Nowadays, adsorption chillers exhibit a low coefficient of performance. This type of plant is designed to increase the efficiency of the primary energy use. This objective as well as the conservation of non-renewable energy resources is becoming an increasingly important aspect of the operation of power generation facilities. As part of their project, the authors have modelled the cycle of a conventional heat power plant integrated with an adsorption chiller-based plant. Multi-variant simulation calculations were performed using IPSEpro simulation software.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Xiaoqiang Xu ◽  
Yongjia Wu ◽  
Lei Zuo ◽  
Shikui Chen

Abstract A large amount of energy from power plants, vehicles, oil refining, and steel or glass making process is released to the atmosphere as waste heat. The thermoelectric generator (TEG) provides a way to reutilize this portion of energy by converting temperature differences into electricity using Seebeck phenomenon. Because the figures of merit zT of the thermoelectric materials are temperature-dependent, it is not feasible to achieve high efficiency of the thermoelectric conversion using only one single thermoelectric material in a wide temperature range. To address this challenge, the authors propose a method based on topology optimization to optimize the layouts of functional graded TEGs consisting of multiple materials. The multimaterial TEG is optimized using the solid isotropic material with penalization (SIMP) method. Instead of dummy materials, both the P-type and N-type electric conductors are optimally distributed with two different practical thermoelectric materials. Specifically, Bi2Te3 and Zn4Sb3 are selected for the P-type element while Bi2Te3 and CoSb3 are employed for the N-type element. Two optimization scenarios with relatively regular domains are first considered with one optimizing on both the P-type and N-type elements simultaneously, and the other one only on single P-type element. The maximum conversion efficiency could reach 9.61% and 12.34% respectively in the temperature range from 25 °C to 400 °C. CAD models are reconstructed based on the optimization results for numerical verification. A good agreement between the performance of the CAD model and optimization result is achieved, which demonstrates the effectiveness of the proposed method.


Author(s):  
Xiaoqiang Xu ◽  
Yongjia Wu ◽  
Lei Zuo ◽  
Shikui Chen

Abstract Over 50% of the energy from power plants, vehicles, oil refining, and steel or glass making process is released to the atmosphere as waste heat. As an attempt to deal with the growing energy crisis, the solid-state thermoelectric generator (TEG), which converts the waste heat into electricity using Seebeck phenomenon, has gained increasing popularity. Since the figures of merit of the thermoelectric materials are temperature dependent, it is not feasible to achieve high efficiency of the thermoelectric conversion using only one single thermoelectric material in a wide temperature range. To address this challenge, this paper proposes a method based on topology optimization to optimize the layouts of functional graded TEGs consisting of multiple materials. The objective of the optimization problem is to maximize the output power and conversion efficiency as well. The proposed method is implemented using the Solid Isotropic Material with Penalization (SIMP) method. The proposed method can make the most of the potential of different thermoelectric materials by distributing each material into its optimal working temperature interval. Instead of dummy materials, both the P and N-type electric conductors are optimally distributed with two different practical thermoelectric materials, namely Bi2Te3 & PbTe for P-type, and Bi2Te3 & CoSb3 for N-type respectively, with the yielding conversion efficiency around 12.5% in the temperature range Tc = 25°C and Th = 400°C. In the 2.5D computational simulation, however, the conversion efficiency shows a significant drop. This could be attributed to the mismatch of the external load and internal TEG resistance as well as the grey region from the topology optimization results as discussed in this paper.


Author(s):  
Vikram Muralidharan ◽  
Matthieu Vierling

Power generation in south Asia has witnessed a steep fall due to the shortage of natural gas supplies for power plants and poor water storage in reservoirs for low hydro power generation. Due to the current economic scenario, there is worldwide pressure to secure and make more gas and oil available to support global power needs. With constrained fuel sources and increasing environmental focus, the quest for higher efficiency would be imminent. Natural gas combined cycle plants operate at a very high efficiency, increasing the demand for gas. At the same time, countries may continue to look for alternate fuels such as coal and liquid fuels, including crude and residual oil, to increase energy stability and security. In over the past few decades, the technology for refining crude oil has gone through a significant transformation. With the advanced refining process, there are additional lighter distillates produced from crude that could significantly change the quality of residual oil used for producing heavy fuel. Using poor quality residual fuel in a gas turbine to generate power could have many challenges with regards to availability and efficiency of a gas turbine. The fuel needs to be treated prior to combustion and needs a frequent turbine cleaning to recover the lost performance due to fouling. This paper will discuss GE’s recently developed gas turbine features, including automatic water wash, smart cooldown and model based control (MBC) firing temperature control. These features could significantly increase availability and improve the average performance of heavy fuel oil (HFO). The duration of the gas turbine offline water wash sequence and the rate of output degradation due to fouling can be considerably reduced.


Author(s):  
Gregor Gnädig

Many Asian countries are experiencing economic growth which averages 5–10% per year. This environment has led to a privatization process in the power generation industry from typically state-run utilities to a system in which a federal agency oversees a market divided by private utilities and independent power producers (IPP) with the need for high efficiency, reliable power generation running on natural gas and diesel oil. In the 50 Hz market, modem, high efficient gas turbines of the type GT13E and GT13E2 have been chosen as prime movers in many combined cycle power plants in Asian countries. This paper includes a product description, and a general overview of GT13E and GT13E2 operating experience, well as an economic evaluation of a typical 500 MW combined cycle power plant.


Author(s):  
Guenther Haupt ◽  
John S. Joyce ◽  
Konrad Kuenstle

The environmental impact of unfired combined-cycle blocks of the GUD® type is compared with that of equivalent reheat steam boiler/turbine units. The outstandingly high efficiency of GUD blocks not only conserves primary-energy resources, but also commensurately reduces undesirable emissions and unavoidable heat rejection to the surroundings. In addition to conventional gas or oil-fired GUD blocks, integrated coal-gasification combined-cycle (ICG-GUD) blocks are investigated from an ecological point of view so as to cover the whole range of available fossil fuels. For each fuel and corresponding type of GUD power plant the most appropriate conventional steam-generating unit of most modern design is selected for comparison purposes. In each case the relative environmental impact is stated in the form of quantified emissions, effluents and waste heat, as well as of useful byproducts and disposable solid wastes. GUD blocks possess the advantage that they allow primary measures to be taken to minimize the production of NOx and SOx, whereas both have to be removed from the flue gases of conventional steam stations by less effective and desirable, albeit more expensive secondary techniques, e.g. flue-gas desulfurization and DENOX systems. In particular, the comparison of CO2 release reveals a significantly lower contribution by GUD blocks to the greenhouse effect than by other fossil-fired power plants.


Author(s):  
Aristide Massardd ◽  
Gian Marid Arnulfi

In this paper three Closed Combined Cycle (C3) systems for underwater power generation are analyzed. In the first, the waste heat rejected by a Closed Brayton Cycle (CBC) is utilized to heat the working fluid of a bottoming Rankine Cycle; in the second, the heat of a primary energy loop fluid is used to heat both CBC and Rankine cycle working fluids; the third solution involves a Metal Rankine Cycle (MRC) combined with an Organic Rankine Cycle (ORC). The significant benefits of the Closed Combined Cycle concepts, compared to the simple CBC system, such as efficiency increase and specific mass reduction, are presented and discussed. A comparison between the three C3 power plants is presented taking into account the technological maturity of all the plant components.


Sign in / Sign up

Export Citation Format

Share Document