scholarly journals Amaranth Leaf Extract Protects Against Hydrogen Peroxide Induced Oxidative Stress in Drosophila Melanogaster

Author(s):  
Johnmark Ndinawe ◽  
Hellen W. Kinyi

Abstract ObjectiveAmaranths leaves are rich in ascorbic acid and polyphenol compounds which have antioxidant activity. The aim of this study was to evaluate their in vivo antioxidant activity. The effect of consumption of Amaranth leaf extract on in vivo antioxidant activity, catalase enzyme activity and H2O2 induced oxidative stress in Drosophila melanogaster flies was assessed.ResultsConsumption of Amaranth leaf extract was associated with increased survival on exposure to H202 in a dose dependent manner in Drosophila melanogaster flies.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ndinawe Johnmark ◽  
Hellen W. Kinyi

Abstract Objective Amaranths leaves are rich in ascorbic acid and polyphenol compounds which have antioxidant activity. The aim of this study was to evaluate their in vivo antioxidant activity. The effect of consumption of Amaranth leaf extract on in vivo antioxidant activity, catalase enzyme activity and H2O2 induced oxidative stress in Drosophila melanogaster flies was assessed. Results Consumption of Amaranth leaf extract was associated with increased survival on exposure to H2o2 in a dose dependent manner in Drosophila melanogaster flies. The study concludes that the ethanolic extract of Amaranth leaves offer protection against hydrogen peroxide-induced oxidative stress.


2017 ◽  
Vol 15 (2) ◽  
pp. 151-156
Author(s):  
Somrudee NAKINCHAT ◽  
Voravuth SOMSAK

The emergence and spread of antimalarial drug resistance of Plasmodium parasites, as well as hypoglycemia, during malaria infection, and subsequent death, are critical problems in malaria-endemic areas. Hence, finding new compounds, especially plant extracts having antimalarial and anti-hypoglycemic activities, are urgently needed. The present study aimed to investigate the antimalarial and anti-hypoglycemic effects of Moringa oleifera leaf extract in Plasmodium berghei infection in mice. Aqueous crude extract of M. oleifera leaves was freshly prepared and used for an efficacy test in vivo. Groups of ICR mice (5 mice in each) were infected with 1´107 infected red blood cells of P. berghei ANKA by intraperitoneal injection and given the extract orally with doses of 100, 500, and 1000 mg/kg for 4 consecutive days. Parasitemia and plasma glucose levels were subsequently measured. The results showed that M. oleifera leaf extract presented significant (p < 0.001) inhibition of parasitemia in a dose-dependent manner. Moreover, this extract exerted anti-hypoglycemia effects in infected mice in a dose-dependent manner. The highest degrees of activity were found at a dose of 1000 mg/kg of the extract. Additionally, no effect on plasma glucose was found in normal mice treated with this extract. It can be concluded that aqueous crude extract of M. oleifera leaves exerted antimalarial and anti-hypoglycemic effects in P. berghei infection in mice.


2021 ◽  
Author(s):  
Ahmed M Hamdan ◽  
Zuhair M. Mohammedsaleh ◽  
Aalaa Aboelnour ◽  
Sherif M.H. Elkhannishi

Abstract PurposeThe therapeutic activity of Glyceryl trinitrate (GTN) is mainly regulated by liberating nitric oxide (NO) and reactive nitrogen species (RNS). During this biotransformation, oxidative stress and lipid peroxidation inside the red blood cells (RBCs) occur. The principal objective of our research is to explain the ameliorating effect of L-ascorbic acid for the deleterious effects of chronic administration of nitrovasodilator drugs. MethodsWe studied some biochemical parameters for the oxidative stress using groups of high sucrose/fat (HSF) diet Wistar male rats chronically orally administered ISMN. Afterwards, we evaluated the role of L-ascorbic acid against these biochemical changes. ResultsChronic treatment with organic nitrates caused elevated serum levels of lipid peroxidation, hemoglobin derivatives as methemoglobin and carboxyhemoglobin, rate of hemoglobin autoxidation, the cellular levels of pro-inflammatory cytokines marker (NF-κB) and apoptosis markers (caspase-3) in myocardium muscles in a dose dependent manner. Meanwhile, such exposure caused decline in the enzymatic effect of superoxide dismutase (SOD), glutathione (GSH) and catalase activity (CAT) accompanied with a decrease of in the level of mitochondrial oxidative stress marker (nrf2) in myocardium muscles and decrease in the serum iron and total iron binding capacity (TIBC) in a dose dependent manner. Concomitant treatment with L-ascorbic acid significantly diminished these changes for all examined parameters.ConclusionChronic administration of organic nitrates leads to the alteration of the level of oxidative stress factors in the myocardium tissue due to generation of reactive oxygen species. Using vitamin C can effectively ameliorate such intoxication to overcome the nitrate tolerance.


2008 ◽  
Vol 27 (4) ◽  
pp. 341-346 ◽  
Author(s):  
EA Soria ◽  
ME Goleniowski ◽  
JJ Cantero ◽  
GA Bongiovanni

Chronic toxicity of arsenic resulting from drinking water is a health problem encountered in humans, especially in South America and Asia, where a correlation between oxidative stress, tumor promotion, and arsenic exposure has been observed. Differential solvent extraction (petroleum ether (PE); dichloromethane (DCM); methanol (OL) and water (W)) was performed to compare the protective (antioxidant) activity of five Argentinian medicinal plants on arsenite-induced oxidative stress in Vero cells, assayed by hydroperoxide measurement. The results were analyzed using ANOVA followed by the LSD Fisher test. The data showed that arsenite was a pro-oxidant agent which acts in a time–dose-dependent manner. Extracts from Eupatorium buniifolium (PE), Lantana grisebachii (PE, W), Mandevilla pentlandiana (PE, W), and Sebastiania commersoniana (DCM, OL, W) prevented the formation of both aqueous and lipid hydroperoxides, but Heterothalamus alienus only impeded lipid ones. Therefore, antioxidant extracts are potentially beneficial and may have a protective activity against arsenite-induced renal injury. Among these, the aqueous extract of L. grisebachii may represent the most suitable preparation for humans since the traditional usage of this plant in popular medicine is through consumption of tea.


2007 ◽  
Vol 97 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Melissa M. Grant ◽  
Nalini Mistry ◽  
Joseph Lunec ◽  
Helen R. Griffiths

To investigate the hypothesis that the micronutrient ascorbic acid can modulate the functional genome, T cells (CCRF-HSB2) were treated with ascorbic acid (up to 150 μm) for up to 24 h. Protein expression changes were assessed by two-dimensional electrophoresis. Forty-one protein spots which showed greater than two-fold expression changes were subject to identification by matrix-assisted laser desorption ionisation time of flight MS. The confirmed protein identifications were clustered into five groups; proteins were associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of phosphatidylinositol transfer protein (promotes intracellular signalling) within 5 min of ascorbic acid treatment was confirmed by Western blotting. Together, these observations suggest that ascorbic acid modulates the T cell proteome in a time- and dose-dependent manner and identify molecular targets for study following antioxidant supplementation in vivo.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Anongporn Kobroob ◽  
Wachirasek Peerapanyasut ◽  
Nipon Chattipakorn ◽  
Orawan Wongmekiat

This study investigates the effects of bisphenol A (BPA) contamination on the kidney and the possible protection by melatonin in experimental rats and isolated mitochondrial models. Rats exposed to BPA (50, 100, and 150 mg/kg, i.p.) for 5 weeks demonstrated renal damages as evident by increased serum urea and creatinine and decreased creatinine clearance, together with the presence of proteinuria and glomerular injuries in a dose-dependent manner. These changes were associated with increased lipid peroxidation and decreased antioxidant glutathione and superoxide dismutase. Mitochondrial dysfunction was also evident as indicated by increased reactive oxygen species production, decreased membrane potential change, and mitochondrial swelling. Coadministration of melatonin resulted in the reversal of all the changes caused by BPA. Studies using isolated mitochondria showed that BPA incubation produced dose-dependent impairment in mitochondrial function. Preincubation with melatonin was able to sustain mitochondrial function and architecture and decreases oxidative stress upon exposure to BPA. The findings indicated that BPA is capable of acting directly on the kidney mitochondria, causing mitochondrial oxidative stress, dysfunction, and subsequently, leading to whole organ damage. Emerging evidence further suggests the protective benefits of melatonin against BPA nephrotoxicity, which may be mediated, in part, by its ability to diminish oxidative stress and maintain redox equilibrium within the mitochondria.


Author(s):  
Udedi Stanley Chidi ◽  
Ani Onuabuchi Nnenna ◽  
Asogwa Kingsley Kelechi ◽  
Maduji Fitzcharles Chijindu ◽  
Okafor Clinton Nebolisa

This study investigated the in-vitro antioxidant activity of ethanol leaf extract of Justicia carnea and its effect on antioxidant status of alloxan-induced diabetic albino rats. The in-vitro antioxidant activity was assayed by determining the total phenol, flavonoids, ascorbic acid, β-carotene and lycopene contents and by using 2,2 diphenyl-1-picrylhydrazyl (DPPH) radical, reducing antioxidant power and inhibition of lipid peroxidation antioxidant systems. Oxidative stress was produced in rats by single intraperitoneal injection of 150 mg/kg alloxan and serum concentration of malonaldehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) were determined. Five experimental groups of rats (n=6) were used for the study. Two groups of diabetic rats received oral daily doses of 100 and 200 mg/kg Justicia carnea leaf extract respectively while gilbenclamide (5 mg/ml); a standard diabetic drug was also given to a specific group for 14 days. From the result, the leaf extract contained a higher concentration of flavonoids followed byphenols, ascorbic acid, lycopene and β-carotene. The extract displayed more potent reducing power ability with EC50 of 40 µg/ml compared to BHA (EC50 of 400µg/ml). The percentage DPPH radical scavenging activity of the extract was also higher with EC50 of 200µg/ml and increased with increase in concentration while BHA had EC50of 320µg/ml. The inhibition of lipid peroxidation also increased with increase in concentration with EC50 of 58µg/ml and comparable with BHA (EC50=60µg/ml). The effect of the plant extract on antioxidant enzyme activities was concentration-dependent. Administration of 100mg/kg of the plant extract resulted in a significant decrease (p<0.05) in serum MDA concentration, while 200 mg/kg of the extract caused a significant (p˂0.05) increase in superoxide dismutase (SOD) and catalase activities with a non-significant increase (p>0.05) in the serum level of MDA when compared with the diabetic untreated group. These findings suggest that ethanol leaf extract of Justicia carnea have antioxidant properties and could handle diabetes-induced oxidative stress.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Nizar Abd Manan ◽  
Norazlina Mohamed ◽  
Ahmad Nazrun Shuid

Oxidative stress and apoptosis can disrupt the bone formation activity of osteoblasts which can lead to osteoporosis. This study was conducted to investigate the effects ofγ-tocotrienol on lipid peroxidation, antioxidant enzymes activities, and apoptosis of osteoblast exposed to hydrogen peroxide (H2O2). Osteoblasts were treated with 1, 10, and 100 μM ofγ-tocotrienol for 24 hours before being exposed to 490 μM (IC50) H2O2for 2 hours. Results showed thatγ-tocotrienol prevented the malondialdehyde (MDA) elevation induced by H2O2in a dose-dependent manner. As for the antioxidant enzymes assays, all doses ofγ-tocotrienol were able to prevent the reduction in SOD and CAT activities, but only the dose of 1 μM of GTT was able to prevent the reduction in GPx. As for the apoptosis assays,γ-tocotrienol was able to reduce apoptosis at the dose of 1 and 10 μM. However, the dose of 100 μM ofγ-tocotrienol induced an even higher apoptosis than H2O2. In conclusion, low doses ofγ-tocotrienol offered protection for osteoblasts against H2O2toxicity, but itself caused toxicity at the high doses.


Pharmacia ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 251-258
Author(s):  
Sergii Demchenko ◽  
Hanna Yeromina ◽  
Yulia Fedchenkova ◽  
Zinaida Ieromina ◽  
Vitaliy Yaremenko ◽  
...  

New 1-phenoxymethyl-4-aryl-5,6,7,8-tetrahydro-2а,4a,8a-triazacyclopenta[cd]azulene-3-carboxylic (or carbothionic) acid derivatives have been designed, synthesized and evaluated for their in vitro antioxidant activity under conditions of the artificial oxidative stress using ionol, ascorbic acid and α-tocopherol as the reference drugs. It has been found that 1-phenoxymethyl-4-aryl-5,6,7,8-tetrahydro-2а,4a,8a-triazacyclopenta[cd]azulene-3-carbothionic acid derivatives 9b, 9c, 9d, 9e, 9f, 9i and 1-phenoxymethyl-4-(41-chlorophenyl)-5,6,7,8-tetrahydro-2,2a,8-triazacyclopenta[cd]azulene-3-carboxylic acid phenylamide 10 reveal a high antioxidant activity and a good in silico pharmacokinetic profile. The data obtained allowed us to select the most promising objects from the substances synthesized for further pharmacological screening for the presence of the antioxidant activity in vivo.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3299 ◽  
Author(s):  
Bruna C. Azevedo ◽  
Mariana Roxo ◽  
Marcos C. Borges ◽  
Herbenya Peixoto ◽  
Eduardo J. Crevelin ◽  
...  

Uncaria tomentosa (Rubiaceae) has a recognized therapeutic potential against various diseases associated with oxidative stress. The aim of this research was to evaluate the antioxidant potential of an aqueous leaf extract (ALE) from U. tomentosa, and its major alkaloids mitraphylline and isomitraphylline. The antioxidant activity of ALE was investigated in vitro using standard assays (DPPH, ABTS and  FRAP), while the in vivo activity and mode of action were studied using Caenorhabditis elegans as a model organism. The purified alkaloids did not exhibit antioxidant effects in vivo. ALE reduced the accumulation of reactive oxygen species (ROS) in wild-type worms, and was able to rescue the worms from a lethal dose of the pro-oxidant juglone. The ALE treatment led to a decreased expression of the oxidative stress response related genes sod-3, gst-4, and hsp-16.2. The treatment of mutant worms lacking the DAF-16 transcription factor with ALE resulted in a significant reduction of ROS levels. Contrarily, the extract had a pro-oxidant effect in the worms lacking the SKN-1 transcription factor. Our results suggest that the antioxidant activity of ALE in C. elegans is independent of its alkaloid content, and that SKN-1 is required for ALE-mediated stress resistance.


Sign in / Sign up

Export Citation Format

Share Document