scholarly journals Isolation and identification of lactic acid bacteria from vegetable-growing soils in Da Lat, Lam Dong

2020 ◽  
Vol 19 (04) ◽  
pp. 1-9
Author(s):  
Thanh T. L. Bien

Lactic acid bacteria (LAB) have been used for decades in agriculture to improve soils, control disease and promote plant growth. LAB have been isolated from fermented food, milks and plants, however, a few studies of LAB from soils have been reported. This study aimed to isolate, screen and identify LAB from vegetable-growing soils collected from Da Lat (Lam Dong province). From 33 soil samples, 25 LAB isolates were selected on MRS agar supplemented with 1% CaCO3. The LAB isolates formed small, creamy white, convex, entire margin colonies, and were Gram-positive, catalase-negative and rod-shaped bacteria. Based on the acid-producing capacity, five LAB isolates (DT2, CT3, CC2, XL7 and S2) that produced clear zones around colonies due to the solubilization of CaCO3 with diameters ranged from 1.03 - 1.33 cm, and 11.8 - 14.3 mg/mL acid after 2-day incubation at 30oC. All selected LAB isolates showed the capacity to inhibit the growth of Fusarium oxysporum at level 1 (inhibitory rates in range of 10.66 - 19.96%), and Phytopthora sp. at level 3 (inhibitory rates in range of 50.86 - 57.44%) after 3 days. The isolates did not inhibit against E. coli and Staphylococcus but inhibit the growth of Bacillus spizizenii and Salmonella typhi with average inhibition diameters in range of 3.33 - 4.90 mm and 2.43 - 3.37 mm, respectively, after 1-day incubation. The five LAB isolates were molecularly determined to be Lactobacillus plantarum with 97 - 100% similarities

Author(s):  
J Aquarista Ingratubun ◽  
Frans G Ijong ◽  
Hens Onibala

Food fermentation is one of various food processing techniques that has sufficient benefits of nutrition values, and also contains lactic acid bacteria which potentially inhibit pathogenic bacteria, thus prolong shelf life of  products. Bakasang is a traditional fermented food from North Sulawesi since many years ago. Reported research of bakasang previously had described that lactic acid bacteria was the dominant isolates and therefore current research  aimed to isolate and identify the lactic acid bacteria which associated during fermentation day 1 and day 15, respectively. Raw materials used were 5 kg intestine and liver of skipjack brought from local market Bersehati Manado. The intestine and liver of skipjack were washed and smashed and mixed with 10% salt  and 5% rice  from weight of the samples and then filled into bottle to be fermented for 15 days. Every 3 days (1,3,6,9,12,15), the samples were collected and analyzed for total lactic acid bacteria by using Total Plate Count Method on de Mann Rogosa Sharpe Agar after incubation at 37°C for 24 h. The colonies  grown were transferred to Tryptic Soy Broth and followed by streaking them on Tryptic Soy Agar and the free growing colony on agar medium were isolated into slant agar which were used for biochemical test such as Gram’s staining, motility test, catalase test, oksidase test, H2S test, IMVIC test (Indole, Methyl Red, Voges Proskauer, Citrate) and carbohydrate fermentation. The results showed that Lactobacillus sp., Bacillus sp., Eubacterium sp., and Bifidobacterium sp. All these four bacteria were distributed from day 1 to day 15 of the fermentation process© Fermentasi bahan pangan merupakan salah satu dari sekian banyak teknik pengolahan makanan yang mempunyai banyak manfaat dari kualitas gizi, mengandung bakteri asam laktat sehingga menghambat bakteri patogen sehingga daya simpan lebih panjang. Bakasang merupakan makanan fermentasi tradisional masyarakat Sulawesi Utara yang sudah ada sejak lama. Penelitian yang telah dilakukan terhadap bakasang menghasilkan informasi bahwa terdapat bakteri asam laktat pada bakasang sehingga menjadi tujuan untuk mengisolasi dan identifikasi bakteri asam laktat selama proses fermentasi 1-15 hari. Bahan baku bakasang ialah jeroan (usus dan hati) ikan cakalang Katsuwonis pelamis sebanyak 5 kg yang diambil dari pasar Bersehati Manado. Sampel jeroan dibersihkan kemudian dihancurkan, ditambahkan garam 10% dan nasi 5% kemudian difermentasi selama 15 hari dengan mengambil tiap-tiap sampel setiap 1, 3, 6, 9, 12, dan 15 untuk dihitung jumlah bakteri asam laktat dengan menggunakkan metode Total Plate Count pada media de Mann Rogosa Sharpe Agar dan koloni yang tumbuh di tumbuhkan  kembali pada media Tryptic Soy Broth  dan digores kembali pada media Tryptic Soy Agar, koloni yang tumbuh digores pada media slant agar yang selanjutnya diidentifikasi bakteri asam laktat berdasarkan uji biokimia yaitu uji pewarnaan Gram, uji motility, uji katalase, uji oksidase, uji H2S dan uji IMVIC (Indole, MethylRed, Voges Proskauer, Citrate). Hasil menunjukkan bahwa selama proses fermentasi berlangsung terdapat 4 genera bakteri asam laktat sesuai yaitu Lactobacillus sp., Bacillus sp., Eubacterium sp., dan Bifidobacterium sp., ke 4 genera ini tersebar pada fermentasi hari 1 sampai hari ke 15©


Author(s):  
Mato Hang

Naniura is a traditional Batak food that is made without going through a heating process, but is made through a fermentation process using acid and salt. The use of acid and salt acts as a preservative because it can inhibit the growth of pathogenic microbes and spoilage microbes. In addition, naniura fermentation has the potential to be a growth medium for lactic acid bacteria, most of which strains can act as probiotics. However, the potential for probiotic naniura is still rarely studied and studied, so this review article is made to examine the potential for probiotic naniura and the health effects that can be obtained. The writing of this journal uses the literature study method, namely by collecting information from various scientific sources. Several studies have shown that naniura contains lactic acid bacteria that can act as broad-spectrum antimicrobials and can specifically inhibit the growth of Salmonella typhi, Bacillus cereus, Clostridium botulinum, E. coli and S. aureus. Consuming probiotic foods can have a positive effect on health, including improving the quality of the digestive tract, increasing the immune system in the body and degrading lactose so that it can be used for lactose intolerant sufferers.


Pro Food ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. 333
Author(s):  
Moegiratul Amaro ◽  
Mutia Devi Ariyana ◽  
Wiharyani Werdiningsih ◽  
Baiq Rien Handayani ◽  
Nazaruddin Nazaruddin ◽  
...  

ABSTRACT The changes of people consumtion patterns demands a healthier bread product and tends to be organic food without use synthetic food additives that brings various consequences to health. This condition leads to the development of food additives which has effectiveness equivalent to synthetic food additive but safe for health especially if consumed long term. Lactic acid bacteria is a bacteria that hass been widely used in fermented food production process. Making bread using lactic acid bacteria begins with sourdough or acid dough consisting of flour and water fermented with lactic acid bacteria either derived from a particular natural contaminant from flour or from a starter culture containing one or more known lactic acid bacteria. Various product of actic acid bacteria metabolism such as lactic acid, acetic acid, exopollysaccharide and antimicrobial compounds such as bacteriocin make lactic acid bacteria application in baking process have to the potential to improve microbiological quality and bread shelf-life. This research aims to study the effect of lactic acid bacteria addition as a natural preservative in the baking process. The ability of lactic acid bacteria to evolve naturally from fermented flour and water promises the potential for easy sourdough preparation and can be used continuously as  a natural preservative that will save production cost. The parameters to be determined include evaluation of lactic acid bacteria and yeast growth on dough and determination of moisture content as well as total bacteris, mold and E.coli an bread. Key words: bread, lactic acid bacteria, preservatives, shelf-life, food safety ABSTRAK Pergeseran pola konsumsi masyarakat menuntut adanya produk roti yang lebih sehat dan cenderung bersifat organik tanpa penggunaan Bahan Tambahan Makanan (BTM) sintetis yang membawa berbagai konsekuensi terhadap kesehatan. Kondisi ini mengarah pada berkembangnya pencarian BTM yang memiliki efektifitas yang setara dengan BTM sintetis namun aman bagi kesehatan terutama jika dikonsumsi jangka panjang. Bakteri Asam Laktat (BAL) merupakan golongan bakteri yang telah digunakan secara luas dalam proses produksi makanan fermentasi. Pembuatan roti menggunakan BAL diawali dengan sourdough atau adonan asam yang terdiri atas tepung dan air yang difermentasi dengan BAL baik yang berasal dari  kontaminan alami tertentu dari tepung atau dari suatu kultur starter yang mengandung satu atau lebih BAL yang sudah diketahui jenisnya. Berbagai produk hasil metabolisme BAL seperti asam laktat, asam asetat, eksopolisakarida dan senyawa antimikroba seperti bakteriosin menjadikan aplikasi BAL pada proses pembuatan roti berpotensi meningkatkan kualitas mikrobiologis dan daya simpan roti. Penelitian ini secara khusus bertujuan untuk mempelajari pengaruh penambahan BAL sebagai pengawet alami dalam proses pembuatan roti. Kemampuan BAL untuk berkembang secara alami dari tepung dan air yang difermentasi menjanjikan potensi penyediaan sourdough yang mudah dibuat dan dapat digunakan secara kontinyu sebagai pengawet alami sehingga akan menghemat biaya produksi. Parameter yang akan ditentukan meliputi evaluasi pertumbuhan BAL dan yeast pada adonan dan penentuan kadar air serta total bakteri, kapang dan E. coli pada roti.   Kata kunci: roti, bakteri asam laktat, pengawet, daya simpan, keamanan pangan.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7555 ◽  
Author(s):  
Wattana Pelyuntha ◽  
Chaiyavat Chaiyasut ◽  
Duangporn Kantachote ◽  
Sasithorn Sirilun

Background Salmonella Typhi and Salmonella Typhimurium are the causative pathogens of salmonellosis, and they are mostly found in animal source foods (ASF). The inappropriate use of antibiotics enhances the possibility for the emergence of antibiotic resistance in pathogens and antibiotic residue in ASF. One promising alternative to antibiotics in animal farming is the use of lactic acid bacteria (LAB). Methods The present study was carried out the cells and/or the cell-free culture supernatants (CFCS) from beneficial LAB against S. Typhi and S. Typhimurium. The antibacterial mechanisms of LAB-CFCS as biocontrol agents against both Salmonella serovars were investigated through the analysis of anti-salmonella growth activity, biofilm inhibition and quorum quenching activity. Results Among 146 LAB strains isolated from 110 fermented food samples, the 2 strong inhibitory effect strains (WM33 and WM36) from fermented grapes against both Salmonella serovars were selected. Out of the selected strains, WM36 was the most effective inhibitor, which indicated S. Typhi by showing 95.68% biofilm inhibition at 20% biofilm inhibition concentration (BIC) and reduced 99.84% of AI-2 signaling interference. The WM33 was the best to control S. Typhimurium by producing 66.46% biofilm inhibition at only 15% BIC and 99.99% AI-2 signaling a reduction. The 16S rDNA was amplified by a polymerase chain reaction (PCR). The selected isolates were identified as Weissella viridescens WM33 and Weissella confusa WM36 based on nucleotide homology and phylogenetic analysis. Conclusion The metabolic extracts from Weissella spp. inhibit Salmonella serovars with the potential to be used as biocontrol agents to improve microbiological safety in the production of ASF.


2017 ◽  
Vol 4 (3) ◽  
pp. 165
Author(s):  
Benedicta Yolanda Khristnaviera ◽  
Vincentia Irene Meitiniarti

South Korea is famous for its fermented food called Kimchi, a traditional Korean food fermented from pickled vegetables with a mixture of spicy seasoning. Kimchi is now one of functional food products because of there are lactic acid bacteria that are probiotic and can produce bacteriocin compounds. These bacteriocin compounds may inhibit or have anti-bacterial activity. The purpose of this study was to obtain isolates of lactic acid bacteria from store-bought kimchi and homemade kimchi, to examine the antibacterial agent produced by lactic acid bacteria isolated from kimchi against Escherichia coli and Staphylococcus aureus bacteria. We conducted a Disk Diffusion Method to tests the bacteriocin activity, and data were descriptively analyzed. The results showed that eight isolates of lactic acid bacteria from store-bought kimchi and homemade kimchi homemade were able to inhibit the growth of tested bacteria, S. aureus and E. coli. Isolate D1 isolated from store-bought kimchi has largest inhibitory capability against S. aureus and E. coli; it has 16.00 mm and 17.33 mm inhibitory zone, respectively. Isolate B2 isolated from homemade kimchi has the most significant inhibitory ability against S. aureus and E. coli; it has 16.67 mm and 17.67 mm inhibitory zone, respectively. The lowest ability to form clear zone was found on isolate D2 isolated from homemade kimchi. The inhibitory zone of produce by strain D2 against S. aureus and E. coli were 7.67 mm and 8.67 mm, respectively.


Author(s):  
Aarinade Adejumoke Omotayo ◽  
Oladipo Oladiti Olaniyi ◽  
Bamidele Juliet Akinyele

This work described the isolation and identification of bacteriocin-producing lactic acid bacteria (LAB) from ‘Kati’(a sorghum based fermented food), and to evaluate the antibacterial effect of bacteriocin on selected pathogenic bacteria. The identities of the isolates were revealed to be as Lactobacillus plantarum, L. brevis, L. fermentum KAT1, L. fermentum KAT2 and Lactococcus lactis using 16S rRNA gene sequence analysis. Out of 28 LAB, five were found to inhibit selected pathogenic bacteria namely; Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and Bacillus cereus. The unpurified bacteriocins produced by the isolated LAB were characterized with respect to the effect of temperature, pH and surfactant. The test isolates showed activities of 6400, 6400, 6400, 3200 and 1600 AU/ml respectively. Crude bacteriocin from L. brevis and L. lactis were the most heat stable at 121ºC for 60 min. Bacteriocins from L. plantarum, L. lactis and L. fermentum KAT1 showed the highest antibacterial activity and stability at pH 2.0 to 6.0. Exposure to Tween 20 increased the bacteriocin activity of the LAB isolates except for L. fermentum KAT2 where loss of activity occurred. The findings from this study suggest that bacteriocinogenic LAB present in ‘kati’ have potentials to inhibit pathogenic/spoilage microorganisms in foods.


2009 ◽  
Vol 38 (6) ◽  
pp. 732-741 ◽  
Author(s):  
Jung-Lim Ko ◽  
Chang-Kyung Oh ◽  
Myung-Cheol Oh ◽  
Soo-Hyun Kim

2020 ◽  
Vol 9 (1) ◽  
pp. 33
Author(s):  
Jirapat Kanklai ◽  
Tasneem Chemama Somwong ◽  
Patthanasak Rungsirivanich ◽  
Narumol Thongwai

Gamma-aminobutyric acid (GABA), the inhibitory neurotransmitter, can be naturally synthesized by a group of lactic acid bacteria (LAB) which is commonly found in rich carbohydrate materials such as fruits and fermented foods. Thirty-six isolates of GABA-producing LAB were obtained from Thai fermented foods. Among these, Levilactobacillus brevis F064A isolated from Thai fermented sausage displayed high GABA content, 2.85 ± 0.10 mg/mL and could tolerate acidic pH and bile salts indicating a promising probiotic. Mulberry (Morus sp.) is widely grown in Thailand. Many mulberry fruits are left to deteriorate during the high season. To increase its value, mulberry juice was prepared and added to monosodium glutamate (MSG), 2% (w/v) prior to inoculation with 5% (v/v) of L. brevis F064A and incubated at 37 °C for 48 h to obtain the GABA-fermented mulberry juice (GABA-FMJ). The GABA-FMJ obtained had 3.31 ± 0.06 mg/mL of GABA content, 5.58 ± 0.52 mg gallic acid equivalent/mL of antioxidant activity, 234.68 ± 15.53 mg cyanidin-3-glucoside/mL of anthocyanin, an ability to inhibit growth of Bacillus cereus TISTR 687, Salmonella Typhi DMST 22842 and Shigella dysenteriae DMST 1511, and 10.54 ± 0.5 log10 colony-forming units (CFU)/mL of viable L. brevis F064A cell count. This GABA-FMJ was considered as a potential naturally functional food for human of all ages.


Sign in / Sign up

Export Citation Format

Share Document