scholarly journals PENAMBAHAN BAKTERI ASAM LAKTAT UNTUK MENINGKATKAN KUALITAS, KEAMANAN DAN DAYA SIMPAN ROTI

Pro Food ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. 333
Author(s):  
Moegiratul Amaro ◽  
Mutia Devi Ariyana ◽  
Wiharyani Werdiningsih ◽  
Baiq Rien Handayani ◽  
Nazaruddin Nazaruddin ◽  
...  

ABSTRACT The changes of people consumtion patterns demands a healthier bread product and tends to be organic food without use synthetic food additives that brings various consequences to health. This condition leads to the development of food additives which has effectiveness equivalent to synthetic food additive but safe for health especially if consumed long term. Lactic acid bacteria is a bacteria that hass been widely used in fermented food production process. Making bread using lactic acid bacteria begins with sourdough or acid dough consisting of flour and water fermented with lactic acid bacteria either derived from a particular natural contaminant from flour or from a starter culture containing one or more known lactic acid bacteria. Various product of actic acid bacteria metabolism such as lactic acid, acetic acid, exopollysaccharide and antimicrobial compounds such as bacteriocin make lactic acid bacteria application in baking process have to the potential to improve microbiological quality and bread shelf-life. This research aims to study the effect of lactic acid bacteria addition as a natural preservative in the baking process. The ability of lactic acid bacteria to evolve naturally from fermented flour and water promises the potential for easy sourdough preparation and can be used continuously as  a natural preservative that will save production cost. The parameters to be determined include evaluation of lactic acid bacteria and yeast growth on dough and determination of moisture content as well as total bacteris, mold and E.coli an bread. Key words: bread, lactic acid bacteria, preservatives, shelf-life, food safety ABSTRAK Pergeseran pola konsumsi masyarakat menuntut adanya produk roti yang lebih sehat dan cenderung bersifat organik tanpa penggunaan Bahan Tambahan Makanan (BTM) sintetis yang membawa berbagai konsekuensi terhadap kesehatan. Kondisi ini mengarah pada berkembangnya pencarian BTM yang memiliki efektifitas yang setara dengan BTM sintetis namun aman bagi kesehatan terutama jika dikonsumsi jangka panjang. Bakteri Asam Laktat (BAL) merupakan golongan bakteri yang telah digunakan secara luas dalam proses produksi makanan fermentasi. Pembuatan roti menggunakan BAL diawali dengan sourdough atau adonan asam yang terdiri atas tepung dan air yang difermentasi dengan BAL baik yang berasal dari  kontaminan alami tertentu dari tepung atau dari suatu kultur starter yang mengandung satu atau lebih BAL yang sudah diketahui jenisnya. Berbagai produk hasil metabolisme BAL seperti asam laktat, asam asetat, eksopolisakarida dan senyawa antimikroba seperti bakteriosin menjadikan aplikasi BAL pada proses pembuatan roti berpotensi meningkatkan kualitas mikrobiologis dan daya simpan roti. Penelitian ini secara khusus bertujuan untuk mempelajari pengaruh penambahan BAL sebagai pengawet alami dalam proses pembuatan roti. Kemampuan BAL untuk berkembang secara alami dari tepung dan air yang difermentasi menjanjikan potensi penyediaan sourdough yang mudah dibuat dan dapat digunakan secara kontinyu sebagai pengawet alami sehingga akan menghemat biaya produksi. Parameter yang akan ditentukan meliputi evaluasi pertumbuhan BAL dan yeast pada adonan dan penentuan kadar air serta total bakteri, kapang dan E. coli pada roti.   Kata kunci: roti, bakteri asam laktat, pengawet, daya simpan, keamanan pangan.

2005 ◽  
Vol 59 (9-10) ◽  
pp. 235-237
Author(s):  
Dragisa Savic ◽  
Natasa Jokovic

The baking of sourdough breads represents one of the oldest biotechnological processes. Despite traditionality, sourdough bread has great potential because of its benefits. Sourdough is a mixture of flour and water that is dominated by a complex microflora composed of yeasts and lactic acid bacteria that are crucial in the preparation of bread dough. Lactic acid bacteria cause acidification by producing lactic acid that increases the shelf life of bread by preventing the growth of undesirable microorganisms and affects the nutritional value of bread by increasing the availability of minerals. In addition to these advantages, the use of sourdough fermentation also improves dough machinability, breadcrumb structure and the characteristic flavour of bread. Lactic acid bacteria in sourdough fermentation are well known representing both homofermentative and heterofermentative bacteria. They may originate from selected natural contaminants in the flour or from a starter culture containing one or more known species of lactic acid bacteria. Sourdough can be cultivated in bakeries or obtained from commercial suppliers. However, many bakeries in Europe still use spontaneously fermented sourdoughs, which have been kept metabolically active for decades by the addition of flour and water at regular intervals. The impact of lactic acid bacteria on sourdough fermentation and their influence on dough and bread quality was discussed on the basis of research and literature data.


1977 ◽  
Vol 40 (11) ◽  
pp. 754-759 ◽  
Author(s):  
J. F. FRANK ◽  
E. H. MARTH

Inhibition of enteropathogenic Escherichia coli in skimmilk at 21 and 32 C by 0.25 and 2.0% of added Streptococcus lactis, Streptococcus cremoris, or a mixed strain starter culture was studied. After 15 h of fermentation, fermented milks were refrigerated at 7 C and then were tested periodically for survival of E. coli. Three methods for enumeration of E. coli during these fermentations were compared. They included trypticase soy agar (TSA) pour plates, violet red bile agar (VRB) pour plates, and TSA surface plating with a VRB overlay. Lactic cultures had similar inhibitory properties at 32 C, but there were differences at 21 C, with S. lactis being least inhibitory and the mixed strain culture most inhibitory. The VRB pour plate method gave poorest recovery of E. coli when fermentation was at 32 C and when fermented milks were refrigerated. The TSA surface plating method apparently allowed for recovery of injured E. coli cells and gave results similar to the TSA pour plate method.


2020 ◽  
Vol 19 (04) ◽  
pp. 1-9
Author(s):  
Thanh T. L. Bien

Lactic acid bacteria (LAB) have been used for decades in agriculture to improve soils, control disease and promote plant growth. LAB have been isolated from fermented food, milks and plants, however, a few studies of LAB from soils have been reported. This study aimed to isolate, screen and identify LAB from vegetable-growing soils collected from Da Lat (Lam Dong province). From 33 soil samples, 25 LAB isolates were selected on MRS agar supplemented with 1% CaCO3. The LAB isolates formed small, creamy white, convex, entire margin colonies, and were Gram-positive, catalase-negative and rod-shaped bacteria. Based on the acid-producing capacity, five LAB isolates (DT2, CT3, CC2, XL7 and S2) that produced clear zones around colonies due to the solubilization of CaCO3 with diameters ranged from 1.03 - 1.33 cm, and 11.8 - 14.3 mg/mL acid after 2-day incubation at 30oC. All selected LAB isolates showed the capacity to inhibit the growth of Fusarium oxysporum at level 1 (inhibitory rates in range of 10.66 - 19.96%), and Phytopthora sp. at level 3 (inhibitory rates in range of 50.86 - 57.44%) after 3 days. The isolates did not inhibit against E. coli and Staphylococcus but inhibit the growth of Bacillus spizizenii and Salmonella typhi with average inhibition diameters in range of 3.33 - 4.90 mm and 2.43 - 3.37 mm, respectively, after 1-day incubation. The five LAB isolates were molecularly determined to be Lactobacillus plantarum with 97 - 100% similarities


2010 ◽  
Vol 73 (2) ◽  
pp. 358-361 ◽  
Author(s):  
S. E. GRAGG ◽  
M. M. BRASHEARS

A 12-day shelf life study was conducted at 7°C to determine whether Escherichia coli O157:H7 on spinach can be controlled effectively by selected strains of lactic acid bacteria (LAB) alone or in combination with chlorine as a multihurdle intervention. The multihurdle intervention consisted of both LAB and chlorine and was applied to spinach as a rinse and evaluated in comparison to LAB alone and chlorine and water rinses. Reductions achieved by all treatments also were compared with those observed for an inoculated control. The spinach was inoculated by submersion in a solution containing an E. coli O157:H7 cocktail at 1.0 × 106 CFU/ml. LAB were applied postharvest at a concentration of 2.0 × 108 CFU/ml, and 200 ppm of chlorine was used for the chlorine rinse. All spinach samples were packaged in commercial packaging, held in a retail display case, and tested for E. coli O157:H7 on days 0, 1, 3, 6, 9, and 12 using the Neo-Grid filtration system and CHROMagar. Survival of LAB throughout the shelf life also was determined. Significant reductions in pathogen populations were achieved by water (P < 0.0008), LAB (P < 0.0001), chlorine (P < 0.0001), and multihurdle (P < 0.0001) treatments when compared with controls. The multihurdle treatment produced the greatest reduction from control populations, a reduction of 1.91 log CFU/ml. This reduction was significantly greater than that achieved with water (P < 0.0001), LAB (P = 0.0025), and chlorine (P < 0.0001) alone, indicating that the application of chlorine and LAB is most effective as a combination treatment. The results obtained from this study indicate that the industry standard chlorine wash may be more effective when applied in combination with LAB.


2020 ◽  
Vol 8 (6) ◽  
pp. 952 ◽  
Author(s):  
Sofia Agriopoulou ◽  
Eygenia Stamatelopoulou ◽  
Monika Sachadyn-Król ◽  
Theodoros Varzakas

Eating fresh fruits and vegetables is, undoubtedly, a healthy habit that should be adopted by everyone (particularly due to the nutrients and functional properties of fruits and vegetables). However, at the same time, due to their production in the external environment, there is an increased risk of their being infected with various pathogenic microorganisms, some of which cause serious foodborne illnesses. In order to preserve and distribute safe, raw, and minimally processed fruits and vegetables, many strategies have been proposed, including bioprotection. The use of lactic acid bacteria in raw and minimally processed fruits and vegetables helps to better maintain their quality by extending their shelf life, causing a significant reduction and inhibition of the action of important foodborne pathogens. The antibacterial effect of lactic acid bacteria is attributed to its ability to produce antimicrobial compounds, including bacteriocins, with strong competitive action against many microorganisms. The use of bacteriocins, both separately and in combination with edible coatings, is considered a very promising approach for microbiological quality, and safety for postharvest storage of raw and minimally processed fruits and vegetables. Therefore, the purpose of the review is to discuss the biopreservation of fresh fruits and vegetables through the use of lactic acid bacteria as a green and safe technique.


2020 ◽  
Vol 26 (7) ◽  
pp. 642-654
Author(s):  
Rui Liu ◽  
Guohuan Gao ◽  
Yuwei Bai ◽  
Lihua Hou

Food additives are artificial or natural substances that are added to food to improve the color, aroma, taste, and other qualities, and to meet processing requirements. For the concern of food health and safety, brewed soy sauce without additives has attracted consumers’ attention. Here, only four necessary raw materials including soybean, wheat, salt, and water were added. High-salt soy sauce fermentation was conducted for six months by sequential inoculation of lactic acid bacteria and yeast under different brine content (18%, 20%, and 22%). By analyzing the physicochemical indicators during moromi, three soy sauces (No. 1: 18% salt, inoculated with Tetragenococcus halophilus and Zygosaccharomyces rouxii, No. 5: 20% salt, inoculated with T. halophilus and Z. rouxii, No. 11: 22% salt, inoculated with T. halophilus and Candida versatilis) were selected and sterilized to produce finished products for further comparative investigation. Results showed that the flavor components of these three soy sauces were richer in variety than the commercial soy sauces and No. 11 soy sauce was detected to have the largest total amount of organic acids. Plate count agar analysis revealed that the free amino acid differences of soy sauces were distinct, among which the No. 11 soy sauce had the highest glutamate content of 19.64 g L−1. Besides, it was found that the shelf life of these three soy sauces could reach two years at 4 ℃. This study suggests that the high-salt soy sauce made by rational application of lactic acid bacteria, yeast, and effective sterilization can have high quality and long shelf life without adding any additives.


2016 ◽  
Vol 39 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Josip Vrdoljak ◽  
Vesna Dobranić ◽  
Ivana Filipović ◽  
Nevijo Zdolec

AbstractCheeses as ready-to-eat food should be considered as a potential source of foodborne pathogens, primarily Listeria monocytogenes. The aim of present study was to determine the microbiological quality of soft, semi-hard and hard cheeses during the shelf-life, with particular reference to L. monocytogenes. Five types of cheeses were sampled at different time-points during the cold storage and analyzed for presence of Salmonella and L. monocytogenes, as well as lactic acid bacteria, Escherichia coli, coagulase-positive staphylococci, yeasts, molds, sulfite-reducing clostridia and L. monocytogenes counts. Water activity, pH and NaCl content were monitored in order to evaluate the possibility of L. monocytogenes growth. Challenge test for L. monocytogenes was performed in soft whey cheese, to determine the growth potential of pathogen during the shelf-life of product. All analyzed cheeses were compliant with microbiological criteria during the shelf-life. In soft cheeses, lactic acid bacteria increased in the course of the shelf-life period (1.2-2.6 log increase), while in semi-hard and hard cheeses it decreased (1.6 and 5.2 log decrease, respectively). Soft cheeses support the growth of L. monocytogenes according to determined pH values (5.8-6.5), water activity (0.99-0.94), and NaCl content (0.3-1.2%). Challenge test showed that L. monocytogenes growth potential in selected soft cheese was 0.43 log10 cfu/g during 8 days at 4°C. Water activity in semi-hard and hard cheeses was a limiting factor for Listeria growth during the shelf-life. Soft, semi-hard and hard cheeses were microbiologically stable during their defined shelf-life. Good manufacturing and hygienic practices must be strictly followed in the production of soft cheeses as Listeria-supporting food and be focused on preventing (re)contamination.


2018 ◽  
Vol 19 (3) ◽  
pp. 947-954
Author(s):  
ASTRIANI ASTRIANI ◽  
NURUD DINIYAH ◽  
JAY JAYUS ◽  
NURHAYATI NURHAYATI

Astriani A, Diniyah N, Jayus J, Nurhayati N. 2018. Phenotypic identification of indigenous fungi and lactic acid bacteria isolated from ’gatot’ an Indonesian fermented food. Biodiversitas 19: 947-954. As a traditional Indonesian food made from cassava, ‘gatot' has special attracted characters of black appearance and chewy texture, mainly as a result of certain fungi and lactic acid bacteria (LAB) during the spontaneous fermentation. However, many producers were failed to gain these typical properties since much unwanted microbial strain often appears during the spontaneous fermentation. Therefore, this study was conducted to isolate and identify the indigenous fungi and LAB which predominantly contributed in fermentation of cassava during ‘gatot’ production. Fungi and LAB were isolated from conventionally made of the ‘gatot’ followed by the phenotypic identification of the isolates based on the morphological and physiological properties. The fungi isolates were morphologically distinguished by the type of mycelia, the shape, and color of the sporangium, while the LAB strains were identified by the type of cell and colony form. In addition, the physiological behavior of the LAB isolates was characterized by their typical growth temperature, its catalase activity and its fermentation profile using BBL crystal kit test. The predominant fungi isolates were identified as Botryodiplodia theobromae, Rhizopus oligosporus, Trichoderma sp. and Aspergillus niger. B. theobromae had greyish white to black color of mycelia when it mature. R. oligosporus had globose sporangium and blackish grey color of the mature mycelia. Trichoderma sp. had green color of the mature sporangium and mycelia. A. niger had yellow color of the mycelia and black color of sporangium. Meanwhile, the indigenous LAB was majority identified as Lactobacillus manihotivorans, Bacillus licheniformis, Brevibacillus brevis and Lactobacillus fermentum. Those bacteria were gram-positive, rods shape, catalase-negative and grew optimally at 37oC. The LAB also arise frequently in many spontaneously fermented food. B. theobromae, R. oligosporus, L. manihotivorans, and L. fermentum were potential and non-pathogenic microbial, which can be used as a starter culture to produce ‘gatot’ under controlled fermentation process.


1998 ◽  
Vol 61 (5) ◽  
pp. 591-600 ◽  
Author(s):  
RAIJA T. AHVENAINEN ◽  
EERO U. HURME ◽  
MARGARETA HÄGG ◽  
EIJA H. SKYTTÄ ◽  
EIRA K. LAURILA

The effects of cultivation conditions, winter storage, peeling method, browning prevention Chemicals replacing sodium bisulfite, and packing methods on the sensory, nutritional and microbiological quality of pre-peeled potato were examined. Two different cultivation lots of the potato variety Van Gogh were used. Cultivation and harvesting conditions and peeling method were the most important facts reducing the sensory quality, especially the appearance, of prepeeled and sliced potatoes. Cooking and baking of potatoes decreased the appearance defects detected in raw potatoes. The levels of vitamin C in packaged samples decreased during winter storage. Cooking for 10 min and keeping potatoes at 60°C for 1 h after cooking also decreased the content of vitamin C. In potato samples immediately after treatments aerobic bacteria were present at levels of 400 to 2,950 CFU/g and lactic acid bacteria at levels of 8 to 16 CFU/g. The number of aerobic bacteria did not increase during storage, and the number of lactic acid bacteria increased at the most to 90 CFU/g. Peeling, washing and packaging methods, cultivation conditions, and winter storage did not have important effects on the number of microbes present.


Sign in / Sign up

Export Citation Format

Share Document