Investigation of Key Genes associated with Prostate Cancer using RNA-Seq Data

2014 ◽  
Vol 29 (1) ◽  
pp. e86-e92 ◽  
Author(s):  
Jitao Wu ◽  
Fan Feng ◽  
Diandong Yang ◽  
Shengqiang Yu ◽  
Jianqiu Liu ◽  
...  

We aimed to identify key genes associated with prostate cancer using RNA-sequencing (RNA-seq) data. RNA-seq data, including 1 cancer sample and 1 adjacent normal sample, were downloaded from the NCBI SRA database and the differentially expressed genes (DEGs) were identified with the software Cufflinks. Functional enrichment analysis was performed to uncover the biological functions of DEGs. Regulatory information was retrieved from the IPA database and a network was established. A total of 147 DEGs were obtained, including 96 downregulated and 51 upregulated DEGs. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that metabolism and signal transduction were the 2 major functions that were significantly influenced. Moreover, an interaction network was built. In conclusion, a number of DEGs was identified and their roles in the pathogenesis of cancer were supported by previous studies. More studies are necessary to further validate their usefulness in the diagnosis and treatment of prostate cancer.

2020 ◽  
Vol 9 (2) ◽  
pp. LMT30
Author(s):  
Chuanli Ren ◽  
Weixiu Sun ◽  
Xu Lian ◽  
Chongxu Han

Aim: To screen and identify key genes related to the development of smoking-induced lung adenocarcinoma (LUAD). Materials & methods: We obtained data from the GEO chip dataset GSE31210. The differentially expressed genes were screened by GEO2R. The protein interaction network of differentially expressed genes was constructed by STRING and Cytoscape. Finally, core genes were screened. The overall survival time of patients with the core genes was analyzed by Kaplan–Meier method. Gene ontology and Kyoto encyclopedia of genes and genomes bioaccumulation was calculated by DAVID. Results: Functional enrichment analysis indicated that nine key genes were actively involved in the biological process of smoking-related LUAD. Conclusion: 23 core genes and nine key genes among them were correlated with adverse prognosis of LUAD induced by smoking.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Wenqing Nai ◽  
Diane Threapleton ◽  
Jingbo Lu ◽  
Kewei Zhang ◽  
Hongyuan Wu ◽  
...  

Abstract Atherosclerosis is the primary cause of cardiovascular events and its molecular mechanism urgently needs to be clarified. In our study, atheromatous plaques (ATH) and macroscopically intact tissue (MIT) sampled from 32 patients were compared and an integrated series of bioinformatic microarray analyses were used to identify altered genes and pathways. Our work showed 816 genes were differentially expressed between ATH and MIT, including 443 that were up-regulated and 373 that were down-regulated in ATH tissues. GO functional-enrichment analysis for differentially expressed genes (DEGs) indicated that genes related to the “immune response” and “muscle contraction” were altered in ATHs. KEGG pathway-enrichment analysis showed that up-regulated DEGs were significantly enriched in the “FcεRI-mediated signaling pathway”, while down-regulated genes were significantly enriched in the “transforming growth factor-β signaling pathway”. Protein-protein interaction network and module analysis demonstrated that VAV1, SYK, LYN and PTPN6 may play critical roles in the network. Additionally, similar observations were seen in a validation study where SYK, LYN and PTPN6 were markedly elevated in ATH. All in all, identification of these genes and pathways not only provides new insights into the pathogenesis of atherosclerosis, but may also aid in the development of prognostic and therapeutic biomarkers for advanced atheroma.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shaxi Ouyang ◽  
Yifang Liu ◽  
Changjuan Xiao ◽  
Qinghua Zeng ◽  
Xun Luo ◽  
...  

Introduction. Dermatomyositis (DM) is a chronic autoimmune disease of predominantly lymphocytic infiltration mainly involving the transverse muscle. Its pathogenesis is remaining unknown. This research is designed to probe the latent pathogenesis of dermatomyositis, identify potential biomarkers, and reveal the pathogenesis of dermatomyositis through information biology analysis of gene chips. Methods. In this study, we utilised the GSE14287 and GSE11971 datasets rooted in the Gene Expression Omnibus (GEO) databank, which included a total of 62 DM samples and 9 normal samples. The datasets were combined, and the differentially expressed gene sets were subjected to weighted gene coexpression network analysis, and the hub gene was screened using a protein interaction network from genes in modules highly correlated with dermatomyositis progression. Results. A total of 3 key genes—myxovirus resistance-2 (MX2), oligoadenylate synthetase 1 (OAS1), and oligoadenylate synthetase 2 (OAS2)—were identified in combination with cell line samples, and the expressions of the 3 genes were verified separately. The results showed that MX2, OAS1, and OAS2 were highly expressed in LPS-treated cell lines compared to normal cell lines. The results of pathway enrichment analysis of the genes indicated that all 3 genes were enriched in the cytosolic DNA signalling and cytokine and cytokine receptor interaction signalling pathways; the results of functional enrichment analysis showed that all 3 were enriched in interferon-α response and interferon-γ response functions. Conclusions. This is important for the study of the pathogenesis and objective treatment of dermatomyositis and provides important reference information for the targeted therapy of dermatomyositis.


2019 ◽  
Author(s):  
Yunze Liu ◽  
Xiaojie Sun ◽  
Aijun Qu

As an evolutionarily conserved mechanism, developmental neuronal remodeling is needed for the proper wiring of the nervous system and is critical for understanding the neurodevelopment mechanisms. Previous studies have shown that during metamorphosis lots of Drosophila melanogaster mushroom body neurons experience stereotypic remodeling. However, the related regulators and downstream executors of pathways are yet unclear, especially studies of transcriptional gene co-expression analysis of nervous systems remain insufficient. In this study, we develop a weighted gene co-expression network (WGCNA) to classify gene modules associated with neuronal remodeling. Moreover, functional and pathway enrichment analysis with protein-protein network construction is applied to detect high informative hub genes in the targeted gene module. Thus, we select a total of five hub genes that play critical roles in neuronal remodeling and identify them with functional enrichment analysis and protein-protein interaction network. Overall, this study provides insight into the underlying molecular mechanism of developmental neuronal remodeling in Drosophila melanogaster.


2019 ◽  
Author(s):  
Yunze Liu ◽  
Xiaojie Sun ◽  
Aijun Qu

As an evolutionarily conserved mechanism, developmental neuronal remodeling is needed for the proper wiring of the nervous system and is critical for understanding the neurodevelopment mechanisms. Previous studies have shown that during metamorphosis lots of Drosophila melanogaster mushroom body neurons experience stereotypic remodeling. However, the related regulators and downstream executors of pathways are yet unclear, especially studies of transcriptional gene co-expression analysis of nervous systems remain insufficient. In this study, we develop a weighted gene co-expression network (WGCNA) to classify gene modules associated with neuronal remodeling. Moreover, functional and pathway enrichment analysis with protein-protein network construction is applied to detect high informative hub genes in the targeted gene module. Thus, we select a total of five hub genes that play critical roles in neuronal remodeling and identify them with functional enrichment analysis and protein-protein interaction network. Overall, this study provides insight into the underlying molecular mechanism of developmental neuronal remodeling in Drosophila melanogaster.


Author(s):  
Jianmin Wang ◽  
Dongliang Zhou ◽  
Hongwei Qin ◽  
Ying Xu ◽  
Ying Guan ◽  
...  

Objective:To promote understandings about the pathogenesis of ischemic stroke (IS) through mining key genes, functions and pathways with microarray technology.Methods:Differentially expressed genes (DEGs) in blood between patients with IS and healthy people were screened out through comparing microarray data obtained from Gene Expression Omnibus. Overrepresented functions in DEGs were revealed by Gene Ontology (GO) enrichment analysis. Interaction network was constructed for the top 24 DEGs with information from Human Protein Reference Database (HPRD). Relevant microRNAs (miRNAs) were retrieved from three databases: TargetScan, miRBase and miRanda.Results:A total of 503 DEGs were obtained. Functional enrichment analysis showed that immune response, signaling pathways and apoptosis were significantly over-represented. Six key genes with big degree, betweenness and clustering coefficient were then revealed, which might play important roles in the development of IS. In addition, 57 differentially expressed miRNAs targeting the 6 genes were retrieved.Conclusions:Our study provides insights into the pathogenesis of IS and potential targets to treat the disease.


2020 ◽  
Author(s):  
Senlin Ye ◽  
Haohui Wang ◽  
Wei Li ◽  
Lu Yi

Abstract Background: Adrenocortical carcinoma (ACC) is a rare malignant tumor originating from the adrenal cortex. However, there are no effective therapies to treat patients with ACC. LncRNA participates in a variety of biological processes of cancers. We constructed ceRNA network and identify key competing endogenous RNAs (ceRNAs) in adrenocortical carcinoma (ACC) using bioinformatic processing tools. Methods: Firstly, the differentially expressed genes (DEGs) were identified by analyzing GSE12368 and GSE19750 datasets. SangerBox was used to generate volcano maps. DAVID database was used for functional enrichment analysis. STRING database was used to conduct Protein-protein interaction (PPI) network, and hub genes were identified by Cytoscape plug-in CytoHubba. UCSC database was used to construct hierarchical clustering of hub genes. Upstream miRNAs of mRNAs were predicted by miRTarBase and upstream lncRNAs of miRNA by miRNet. Expression analysis for lncRNAs were performed via GEPIA. Prognostic analysis for genes, miRNAs and lncRNAs were performed via cBioPortal, OncomiR and GEPIA, respectively. Results: In this study, 49 and 276 upregulated and downregulated significant DEGs were identified. KEGG pathway enrichment analysis showed that they were significantly enriched in cancer-associated pathways. According to node degree, the top 10 upregulated genes and downregulated genes were classfied as hub genes. However, only 9 hub genes were defined as key genes because alteration was significantly associated with worse prognosis and all the 9 key genes were upregulated hub genes. Then, 15 miRNAs were predicted to target the 7 out of 9 key genes. But only 4 miRNAs were defined as key miRNAs because alteration significantly influenced prognosis in cancer. 185 lncRNAs were predicted to potentially interaction with the 4 miRNAs. Only 3 lncRNAs(XIST, HOXA11-AS and TMPO-AS1) were up-regulated and only 1 lncRNA (HOXA11-AS ) indicated alteration was significantly associated with worse prognosis in adrenocortical carcinoma. HOXA11-AS were finally identified as key lncRNA. Finally, RRM2-miR-24-3p/let-7a-5p-HOXA11-AS, CDK1/MCM4-miR-24-3P-HOXA11-AS competing endogenous RNA (ceRNA) sub-networks were constructed in adrenocortical carcinoma. Conclution:This study has constructed RRM2-miR-24-3p/let-7a-5p-HOXA11-AS, CDK1/MCM4-miR-24-3p-HOXA11-AS competing endogenous RNA (ceRNA) sub-networks. Our results suggested that these sub-networks might be potential therapeutic targets or prognostic biomarkers in ACC.


2021 ◽  
Vol 28 (1) ◽  
pp. 20-33
Author(s):  
Lydia-Eirini Giannakou ◽  
Athanasios-Stefanos Giannopoulos ◽  
Chrissi Hatzoglou ◽  
Konstantinos I. Gourgoulianis ◽  
Erasmia Rouka ◽  
...  

Haemophilus influenzae (Hi), Moraxella catarrhalis (MorCa) and Pseudomonas aeruginosa (Psa) are three of the most common gram-negative bacteria responsible for human respiratory diseases. In this study, we aimed to identify, using the functional enrichment analysis (FEA), the human gene interaction network with the aforementioned bacteria in order to elucidate the full spectrum of induced pathogenicity. The Human Pathogen Interaction Database (HPIDB 3.0) was used to identify the human proteins that interact with the three pathogens. FEA was performed via the ToppFun tool of the ToppGene Suite and the GeneCodis database so as to identify enriched gene ontologies (GO) of biological processes (BP), cellular components (CC) and diseases. In total, 11 human proteins were found to interact with the bacterial pathogens. FEA of BP GOs revealed associations with mitochondrial membrane permeability relative to apoptotic pathways. FEA of CC GOs revealed associations with focal adhesion, cell junctions and exosomes. The most significantly enriched annotations in diseases and pathways were lung adenocarcinoma and cell cycle, respectively. Our results suggest that the Hi, MorCa and Psa pathogens could be related to the pathogenesis and/or progression of lung adenocarcinoma via the targeting of the epithelial cellular junctions and the subsequent deregulation of the cell adhesion and apoptotic pathways. These hypotheses should be experimentally validated.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhixin Wu ◽  
Yinxian Wen ◽  
Guanlan Fan ◽  
Hangyuan He ◽  
Siqi Zhou ◽  
...  

Abstract Background Steroid-induced osteonecrosis of the femoral head (SONFH) is a chronic and crippling bone disease. This study aims to reveal novel diagnostic biomarkers of SONFH. Methods The GSE123568 dataset based on peripheral blood samples from 10 healthy individuals and 30 SONFH patients was used for weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) screening. The genes in the module related to SONFH and the DEGs were extracted for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Genes with |gene significance| > 0.7 and |module membership| > 0.8 were selected as hub genes in modules. The DEGs with the degree of connectivity ≥5 were chosen as hub genes in DEGs. Subsequently, the overlapping genes of hub genes in modules and hub genes in DEGs were selected as key genes for SONFH. And then, the key genes were verified in another dataset, and the diagnostic value of key genes was evaluated by receiver operating characteristic (ROC) curve. Results Nine gene co-expression modules were constructed via WGCNA. The brown module with 1258 genes was most significantly correlated with SONFH and was identified as the key module for SONFH. The results of functional enrichment analysis showed that the genes in the key module were mainly enriched in the inflammatory response, apoptotic process and osteoclast differentiation. A total of 91 genes were identified as hub genes in the key module. Besides, 145 DEGs were identified by DEGs screening and 26 genes were identified as hub genes of DEGs. Overlapping genes of hub genes in the key module and hub genes in DEGs, including RHAG, RNF14, HEMGN, and SLC2A1, were further selected as key genes for SONFH. The diagnostic value of these key genes for SONFH was confirmed by ROC curve. The validation results of these key genes in GSE26316 dataset showed that only HEMGN and SLC2A1 were downregulated in the SONFH group, suggesting that they were more likely to be diagnostic biomarkers of SOFNH than RHAG and RNF14. Conclusions Our study identified that two key genes, HEMGN and SLC2A1, might be potential diagnostic biomarkers of SONFH.


2021 ◽  
Author(s):  
Shaowei Fan ◽  
Yuanhui Hu

Abstract Background: Heart failure (HF) is the most common potential cause of death, causing a huge health and economic burden all over the world. So far, some impressive progress has been made in the study of pathogenesis. However, the underlying molecular mechanisms leading to this disease remain to be fully elucidated. Methods: The microarray data sets of GSE76701, GSE21610 and GSE8331 were retrieved from the gene expression comprehensive database (GEO). After merging all microarray data and adjusting batch effects, differentially expressed genes (DEG) were determined. Functional enrichment analysis was performed based on Gene Ontology (GO) resources, Kyoto Encyclopedia of Genes and Genomes (KEGG) resources, gene set enrichment analysis (GSEA), response pathway database and Disease Ontology (DO). Protein protein interaction (PPI) network was constructed using string database. Combined with the above important bioinformatics information, the potential key genes were selected. The comparative toxicological genomics database (CTD) is used to explore the interaction between potential key genes and HF. Results: We identified 38 patients with heart failure and 16 normal controls. There were 315 DEGs among HF samples, including 278 up-regulated genes and 37 down-regulated genes. Pathway enrichment analysis showed that most DEGs were significantly enriched in BMP signal pathway, transmembrane receptor protein serine / threonine kinase signal pathway, extracellular matrix, basement membrane, glycosaminoglycan binding, sulfur compound binding and so on. Similarly, GSEA enrichment analysis showed that DEGs were mainly enriched in extracellular matrix and extracellular matrix related proteins. BBS9, CHRD, BMP4, MYH6, NPPA and CCL5 are central genes in PPI networks and modules. Conclusions: the enrichment pathway of DEGs and go ontology may reveal the molecular mechanism of HF. Among them, target genes EIF1AY, RPS4Y1, USP9Y, KDM5D, DDX3Y, NPPA, HBB, TSIX, LOC28556 and XIST are expected to become new targets for heart failure. Our findings provide potential biomarkers or therapeutic targets for the further study of heart failure and contribute to the development of advanced prediction, diagnosis and treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document