scholarly journals HEMGN and SLC2A1 might be potential diagnostic biomarkers of steroid-induced osteonecrosis of femoral head: study based on WGCNA and DEGs screening

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhixin Wu ◽  
Yinxian Wen ◽  
Guanlan Fan ◽  
Hangyuan He ◽  
Siqi Zhou ◽  
...  

Abstract Background Steroid-induced osteonecrosis of the femoral head (SONFH) is a chronic and crippling bone disease. This study aims to reveal novel diagnostic biomarkers of SONFH. Methods The GSE123568 dataset based on peripheral blood samples from 10 healthy individuals and 30 SONFH patients was used for weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) screening. The genes in the module related to SONFH and the DEGs were extracted for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Genes with |gene significance| > 0.7 and |module membership| > 0.8 were selected as hub genes in modules. The DEGs with the degree of connectivity ≥5 were chosen as hub genes in DEGs. Subsequently, the overlapping genes of hub genes in modules and hub genes in DEGs were selected as key genes for SONFH. And then, the key genes were verified in another dataset, and the diagnostic value of key genes was evaluated by receiver operating characteristic (ROC) curve. Results Nine gene co-expression modules were constructed via WGCNA. The brown module with 1258 genes was most significantly correlated with SONFH and was identified as the key module for SONFH. The results of functional enrichment analysis showed that the genes in the key module were mainly enriched in the inflammatory response, apoptotic process and osteoclast differentiation. A total of 91 genes were identified as hub genes in the key module. Besides, 145 DEGs were identified by DEGs screening and 26 genes were identified as hub genes of DEGs. Overlapping genes of hub genes in the key module and hub genes in DEGs, including RHAG, RNF14, HEMGN, and SLC2A1, were further selected as key genes for SONFH. The diagnostic value of these key genes for SONFH was confirmed by ROC curve. The validation results of these key genes in GSE26316 dataset showed that only HEMGN and SLC2A1 were downregulated in the SONFH group, suggesting that they were more likely to be diagnostic biomarkers of SOFNH than RHAG and RNF14. Conclusions Our study identified that two key genes, HEMGN and SLC2A1, might be potential diagnostic biomarkers of SONFH.

2021 ◽  
Author(s):  
Yang Dinglong ◽  
Chen Shuai ◽  
Chen Yujing ◽  
Wang Beiyang ◽  
Zhang Guohao ◽  
...  

Abstract Background: Despite cumulative evidence shows osteonecrosis of the femoral head (ONFH) could result in the progressive collapse of the femoral head. The pathogenesis of ONFH remains unclear. Early ONFH is difficult to diagnose due to the lack of effective biomarkers. Method: In Gene Expression Omnibus (GEO) database, we searched the Microarray datasets for serum (GSE123568) in ONFH and normal controls to identify differentially expressed genes (DEGs) by R software. The enrichment analyses were performed to enrich pathways of DEGs. Protein–protein interaction (PPI), miRNA-mRNA co-expression, ceRNA networks were constructed using Cytoscape to identity top15 hub genes, target miRNAs of hub genes and potential regulatory pathways. Furthermore, hub genes validated in GSE74089 with high diagnostic value for ONFH were selected as key genes. The Human Protein Atlas (HPA) and Bgee Database were used to find out the subcellular and tissue distribution of key genes.Results: A total of 568 DEGs were identified between 30 ONFH samples and 10 normal controls. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis showed that DEGs are mostly enriched in innate immune responses, thrombosis and signal transduction. Fifteen hub genes were identified by PPI network using Cytoscape. The 15 hub genes were almost all positively correlated with each other. The expression of PLEK (P<0.001), TLR2 (P<0.05), and TREM1 (P<0.001) were validated in dataset GSE74089 and they had high diagnostic value (AUC>0.8) for ONFH. MALAT1-miR-146b-5p-TLR2, MALAT1-miR-664b-3p-PLEK, NORAD-miR-106b-5p-TLR2, and MSMO1-miR-106b-5p-TLR2 might be potential RNA regulatory pathways in the disease progression of ONFH. PLEK mainly expressed in nucleus, TREM1 in dictyosome, and TLR2 in nucleoplasm and mitochondria.Conclusions: In this study, we found that PLEK, TLR2, and TREM1 might be potential biomarkers in diagnostic and play a vital role in the progression of ONFH.


2021 ◽  
Author(s):  
Qinglong Wang ◽  
Zhe Zhao ◽  
Wantao Wang ◽  
Zhipeng Huang ◽  
Wenbo Wang

Abstract Background: Kashin-Beck disease (KBD) is currently an endemic form of osteoarthritis. In this study, we explored novel KBD diagnostic biomarkers.Methods: The GSE59446 dataset was used to conduct Weighted Gene Co-expression Network Analysis (WGCNA) and differentially expressed genes (DEGs) analysis with peripheral blood samples of 100 healthy individuals and 100 KBD patients. As part of the gene ontology pathway enrichment analysis, genes related to SONFH and DEGs were selected from the extraction module. Then, central DEGs were selected for LASSO analysis, and, based on SVM-RFE and DEG results, overlapping genes were identified as key KBD genes. Next, we analyzed the correlations between the selected genes and age, gender, and other factors to eliminate their influences on gene expression. Finally, we evaluated the diagnostic value of key KBD genes using case information collected by us.Results: Seven gene co-expression modules were created using WGCNA. The turquoise module was identified as a KBD key module since it showed the highest correlation to KBD. The functional enrichment analysis revealed that the genes associated with this key module were mainly involved in mitochondrial reactions, protein heterooligomerization, and negatively regulating cysteine-type endopeptidase-dependent apoptotic processes. Additionally, 12 key genes were identified using the LASSO analysis, 5 major genes using SVM-RFE analysis, and 36 DEGs were screened through the "limma" R package. The GLRX5 gene - pivotal in DEGs, LASSO, and SVM-RFE - was further aggregated as the key KBD gene. Correlation analyses confirmed the GLRX5 diagnostic value for KBD and that it was not related to age, gender, and other factors. Finally, data from our patients demonstrated that GLRX5 can be a KBD diagnostic biomarker.Conclusions: We demonstrated that the target gene GLRX5 can be a KBD non-invasive diagnosis biomarker.


2020 ◽  
Author(s):  
Senlin Ye ◽  
Haohui Wang ◽  
Wei Li ◽  
Lu Yi

Abstract Background: Adrenocortical carcinoma (ACC) is a rare malignant tumor originating from the adrenal cortex. However, there are no effective therapies to treat patients with ACC. LncRNA participates in a variety of biological processes of cancers. We constructed ceRNA network and identify key competing endogenous RNAs (ceRNAs) in adrenocortical carcinoma (ACC) using bioinformatic processing tools. Methods: Firstly, the differentially expressed genes (DEGs) were identified by analyzing GSE12368 and GSE19750 datasets. SangerBox was used to generate volcano maps. DAVID database was used for functional enrichment analysis. STRING database was used to conduct Protein-protein interaction (PPI) network, and hub genes were identified by Cytoscape plug-in CytoHubba. UCSC database was used to construct hierarchical clustering of hub genes. Upstream miRNAs of mRNAs were predicted by miRTarBase and upstream lncRNAs of miRNA by miRNet. Expression analysis for lncRNAs were performed via GEPIA. Prognostic analysis for genes, miRNAs and lncRNAs were performed via cBioPortal, OncomiR and GEPIA, respectively. Results: In this study, 49 and 276 upregulated and downregulated significant DEGs were identified. KEGG pathway enrichment analysis showed that they were significantly enriched in cancer-associated pathways. According to node degree, the top 10 upregulated genes and downregulated genes were classfied as hub genes. However, only 9 hub genes were defined as key genes because alteration was significantly associated with worse prognosis and all the 9 key genes were upregulated hub genes. Then, 15 miRNAs were predicted to target the 7 out of 9 key genes. But only 4 miRNAs were defined as key miRNAs because alteration significantly influenced prognosis in cancer. 185 lncRNAs were predicted to potentially interaction with the 4 miRNAs. Only 3 lncRNAs(XIST, HOXA11-AS and TMPO-AS1) were up-regulated and only 1 lncRNA (HOXA11-AS ) indicated alteration was significantly associated with worse prognosis in adrenocortical carcinoma. HOXA11-AS were finally identified as key lncRNA. Finally, RRM2-miR-24-3p/let-7a-5p-HOXA11-AS, CDK1/MCM4-miR-24-3P-HOXA11-AS competing endogenous RNA (ceRNA) sub-networks were constructed in adrenocortical carcinoma. Conclution:This study has constructed RRM2-miR-24-3p/let-7a-5p-HOXA11-AS, CDK1/MCM4-miR-24-3p-HOXA11-AS competing endogenous RNA (ceRNA) sub-networks. Our results suggested that these sub-networks might be potential therapeutic targets or prognostic biomarkers in ACC.


2021 ◽  
Author(s):  
Shaowei Fan ◽  
Yuanhui Hu

Abstract Background: Heart failure (HF) is the most common potential cause of death, causing a huge health and economic burden all over the world. So far, some impressive progress has been made in the study of pathogenesis. However, the underlying molecular mechanisms leading to this disease remain to be fully elucidated. Methods: The microarray data sets of GSE76701, GSE21610 and GSE8331 were retrieved from the gene expression comprehensive database (GEO). After merging all microarray data and adjusting batch effects, differentially expressed genes (DEG) were determined. Functional enrichment analysis was performed based on Gene Ontology (GO) resources, Kyoto Encyclopedia of Genes and Genomes (KEGG) resources, gene set enrichment analysis (GSEA), response pathway database and Disease Ontology (DO). Protein protein interaction (PPI) network was constructed using string database. Combined with the above important bioinformatics information, the potential key genes were selected. The comparative toxicological genomics database (CTD) is used to explore the interaction between potential key genes and HF. Results: We identified 38 patients with heart failure and 16 normal controls. There were 315 DEGs among HF samples, including 278 up-regulated genes and 37 down-regulated genes. Pathway enrichment analysis showed that most DEGs were significantly enriched in BMP signal pathway, transmembrane receptor protein serine / threonine kinase signal pathway, extracellular matrix, basement membrane, glycosaminoglycan binding, sulfur compound binding and so on. Similarly, GSEA enrichment analysis showed that DEGs were mainly enriched in extracellular matrix and extracellular matrix related proteins. BBS9, CHRD, BMP4, MYH6, NPPA and CCL5 are central genes in PPI networks and modules. Conclusions: the enrichment pathway of DEGs and go ontology may reveal the molecular mechanism of HF. Among them, target genes EIF1AY, RPS4Y1, USP9Y, KDM5D, DDX3Y, NPPA, HBB, TSIX, LOC28556 and XIST are expected to become new targets for heart failure. Our findings provide potential biomarkers or therapeutic targets for the further study of heart failure and contribute to the development of advanced prediction, diagnosis and treatment strategies.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11321
Author(s):  
Di Zhang ◽  
Pengguang Yan ◽  
Taotao Han ◽  
Xiaoyun Cheng ◽  
Jingnan Li

Background Ulcerative colitis-associated colorectal cancer (UC-CRC) is a life-threatening complication of ulcerative colitis (UC). The mechanisms underlying UC-CRC remain to be elucidated. The purpose of this study was to explore the key genes and biological processes contributing to colitis-associated dysplasia (CAD) or carcinogenesis in UC via database mining, thus offering opportunities for early prediction and intervention of UC-CRC. Methods Microarray datasets (GSE47908 and GSE87466) were downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between groups of GSE47908 were identified using the “limma” R package. Weighted gene co-expression network analysis (WGCNA) based on DEGs between the CAD and control groups was conducted subsequently. Functional enrichment analysis was performed, and hub genes of selected modules were identified using the “clusterProfiler” R package. Single-gene gene set enrichment analysis (GSEA) was conducted to predict significant biological processes and pathways associated with the specified gene. Results Six functional modules were identified based on 4929 DEGs. Green and blue modules were selected because of their consistent correlation with UC and CAD, and the highest correlation coefficient with the progress of UC-associated carcinogenesis. Functional enrichment analysis revealed that genes of these two modules were significantly enriched in biological processes, including mitochondrial dysfunction, cell-cell junction, and immune responses. However, GSEA based on differential expression analysis between sporadic colorectal cancer (CRC) and normal controls from The Cancer Genome Atlas (TCGA) indicated that mitochondrial dysfunction may not be the major carcinogenic mechanism underlying sporadic CRC. Thirteen hub genes (SLC25A3, ACO2, AIFM1, ATP5A1, DLD, TFE3, UQCRC1, ADIPOR2, SLC35D1, TOR1AIP1, PRR5L, ATOX1, and DTX3) were identified. Their expression trends were validated in UC patients of GSE87466, and their potential carcinogenic effects in UC were supported by their known functions and other relevant studies reported in the literature. Single-gene GSEA indicated that biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to angiogenesis and immune response were positively correlated with the upregulation of TFE3, whereas those related to mitochondrial function and energy metabolism were negatively correlated with the upregulation of TFE3. Conclusions Using WGCNA, this study found two gene modules that were significantly correlated with CAD, of which 13 hub genes were identified as the potential key genes. The critical biological processes in which the genes of these two modules were significantly enriched include mitochondrial dysfunction, cell-cell junction, and immune responses. TFE3, a transcription factor related to mitochondrial function and cancers, may play a central role in UC-associated carcinogenesis.


2020 ◽  
Author(s):  
Xinyang Shen ◽  
Zhijian Wang ◽  
Zhirui Zeng ◽  
Zhenqin Huang ◽  
Xiaowei Huang ◽  
...  

Abstract Background: Preeclampsia is a form of hypertension in pregnancy, which induced by complicated factors. However, the pathogenesis of the disease is unclear. The present study was aimed to discover the critical biomarkers associated with the occurrence and development of preeclampsia. Methods:Gene data profile GSE75010 was downloaded from the Gene Expression Omnibus (GEO) database and used as discovery cohort to establish a WGCNA network determining significant modules which associated with clinical traits. Subsequently, functional enrichment analysis, pathway analysis and protein-protein interaction (PPI) network construction were performed on the core genes in significant modules to identify hub genes. Then, gene data profile GSE25906 was used as verified cohort to determine their diagnostic value of hub genes. The protein expression levels of these hub genes in preeclampsia and control placental tissues were verified using immunohistochemistry method. Finally, GSEA was performed to analyze their enrichment pathways. Results: Total 33 co-expression modules were identified after the establishment of WGCNA, of which 4 gene modules were identified as significant modules because they were related to multiple (>3) clinical traits. Total 75 core genes in significant modules were analyzed, and results showed that they were mainly enriched in adaptive immune response (Gene Ontology term) and platelet activation (Kyoto Encyclopedia of Genes and Genomes term). Finally, a total of 5 genes including TYROBP, PLEK, LCP2, HCK, ITGAM were identified as hub genes which scored high in PPI network and had high diagnostic value. Furthermore, the protein level of these 5 genes in placental tissues of preeclampsia was lower than that of the control group. Moreover, these 5 genes were all enriched in 17 pathways, including autoimmunity pathway. Conclusions:These 5 genes (TYROBP, PLEK, LCP2, HCK, ITGAM) may be closely related to the pathogenesis of preeclampsia, which may also help the diagnosis and therapy of preeclampsia.


2019 ◽  
Author(s):  
Yunze Liu ◽  
Xiaojie Sun ◽  
Aijun Qu

As an evolutionarily conserved mechanism, developmental neuronal remodeling is needed for the proper wiring of the nervous system and is critical for understanding the neurodevelopment mechanisms. Previous studies have shown that during metamorphosis lots of Drosophila melanogaster mushroom body neurons experience stereotypic remodeling. However, the related regulators and downstream executors of pathways are yet unclear, especially studies of transcriptional gene co-expression analysis of nervous systems remain insufficient. In this study, we develop a weighted gene co-expression network (WGCNA) to classify gene modules associated with neuronal remodeling. Moreover, functional and pathway enrichment analysis with protein-protein network construction is applied to detect high informative hub genes in the targeted gene module. Thus, we select a total of five hub genes that play critical roles in neuronal remodeling and identify them with functional enrichment analysis and protein-protein interaction network. Overall, this study provides insight into the underlying molecular mechanism of developmental neuronal remodeling in Drosophila melanogaster.


2021 ◽  
Author(s):  
XueZhen LIANG ◽  
Di LUO ◽  
Yan-Rong CHEN ◽  
Jia-Cheng LI ◽  
Bo-Zhao YAN ◽  
...  

Abstract Purpose: Steroid-induced osteonecrosis of the femoral head (SONFH) was a refractory orthopedic hip joint disease in the young and middle-aged people. Previous experimental studies had shown that autophagy might be involved in the pathological process of SONFH, but the pathogenesis of autophagy in SONFH remained unclear. We aim to identify and validate the key potential autophagy-related genes of SONFH to further illustrate the mechanism of autophagy in SONFH through bioinformatics analysis. Methods: The mRNA expression profile dataset GSE123568 was download from Gene Expression Omnibus (GEO) database, including 10 non-SONFH (following steroid administration) samples and 30 SONFH samples. The autophagy-related genes were obtained from the Human Autophagy Database (HADb). The autophagy-related genes of SONFH were screened by intersecting GSE123568 dataset with autophagy genes. The differentially expressed autophagy-related genes of SONFH were identified by R software. Besides, the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted for the differentially expressed autophagy-related genes of SONFH by R software. Then, the correlation analysis between the expression levels of differentially expressed autophagy-related genes of SONFH was confirmed by R software. Moreover, the protein–protein interaction (PPI) network were analyzed by the Search Tool for the Retrieval of Interacting Genes (STRING), and the significant gene cluster modules were identified by the MCODE Cytoscape plugin, and hub genes of differentially expressed autophagy-related genes of SONFH were screened by the CytoHubba Cytoscape plugin. Finally, the expression levels of hub genes of differentially expressed autophagy-related genes of SONFH was validated in hip articular cartilage specimens from necrosis femur head (NFH) by GSE74089 dataset. Results: A total of 34 differentially expressed autophagy-related genes were identified between the peripheral blood of SONFH samples and non-SONFH Samples based on the defined criteria, including 25 up-regulated genes and 9 down-regulated genes. The GO and KEGG pathway enrichment analysis revealed that these 34 differentially expressed autophagy-related genes of SONFH were concentrated in death domain receptors, FOXO signaling pathway and apoptosis. The correlation analysis revealed a significant correlation among the 34 differentially expressed autophagy-related genes of SONFH. The PPI results demonstrated that the 34 differentially expressed autophagy-related genes interacted with each other. There were 10 hub genes identified by the MCC algorithms of Cytohubba. The results of GSE74089 dataset showed TNFSF10, PTEN and CFLAR were significantly upregulated while BCL2L1 were significantly downregulated in the hip cartilage specimens, which were consistent with the GSE123568 dataset. Conclusions: There were 34 potential autophagy-related genes of SONFH identified using bioinformatics analysis. TNFSF10, PTEN, CFLAR and BCL2L1 might serve as potential drug targets and biomarkers by regulating autophagy. These results would expand new insights into the autophagy-related understanding of SONFH and might be useful in the diagnosis and prognosis of SONFH.


2021 ◽  
Author(s):  
Xi Yin ◽  
Miao Wang ◽  
Wei Wang ◽  
Tong Chen ◽  
Ge Song ◽  
...  

Abstract Parkinson’s disease (PD) is a common neurodegenerative disease and the mechanism underlying PD pathogenesis is incompletely understood. Increasing evidence indicates that microRNA (miRNA) plays critical regulatory role in the pathogenesis of PD. This study aimed to determine the miRNA-mRNA regulatory network for PD. The differentially expressed miRNAs (DEmis) and genes (DEGs) between PD patients and healthy donors were screened from miRNA dataset GSE16658 and mRNA dataset GSE100054 downloaded from the Gene Expression Omnibus (GEO) database. Target genes of the DEmis were selected when predicted by 3 or 4 online databases and overlapped with DEGs from GSE100054. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted by Database for Annotation, Visualization and Integrated Discovery (DAVID) and Metascape analytic tool. The correlation between the screened genes and PD was evaluated by the online tool Comparative Toxicogenomics Database (CTD). The protein-protein interactions (PPI) network was built by STRING platform. Finally, we testify the expression of members of the miRNA-mRNA regulatory network in the blood samples collected from PD patients and healthy donors by using qRT-PCR. 1505 upregulated and 1302 downregulated DEGs, 77 upregulated DEmis and 112 downregulated DEmis were preliminarily screened from GEO database. Through further functional enrichment analysis, 10 PD-related hub genes were selected, including RAC1, IRS2, LEPR, PPARGC1A, CAMKK2, RAB10, RAB13, RAB27B, RAB11A and JAK2, which were mainly involved in Rab protein signaling transduction, AMPK signaling pathway and signaling by Leptin. The miRNA-mRNA regulatory network was constructed with 10 hub genes and their interacting miRNAs overlapped with DEmis, including miR-30e-5p, miR-142-3p, miR-101-3p, miR-32-3p, miR-508-5p, miR-642a-5p, miR-19a-3p and miR-21-5p. Analysis on clinical samples verified significant upregulation of LEPR and downregulation of miR-101-3p in PD patients compared with healthy donors. In the study, the potential miRNA-mRNA regulatory network was constructed in PD, which may provide novel insight into pathogenesis and treatment of PD.


2019 ◽  
Author(s):  
Yunze Liu ◽  
Xiaojie Sun ◽  
Aijun Qu

As an evolutionarily conserved mechanism, developmental neuronal remodeling is needed for the proper wiring of the nervous system and is critical for understanding the neurodevelopment mechanisms. Previous studies have shown that during metamorphosis lots of Drosophila melanogaster mushroom body neurons experience stereotypic remodeling. However, the related regulators and downstream executors of pathways are yet unclear, especially studies of transcriptional gene co-expression analysis of nervous systems remain insufficient. In this study, we develop a weighted gene co-expression network (WGCNA) to classify gene modules associated with neuronal remodeling. Moreover, functional and pathway enrichment analysis with protein-protein network construction is applied to detect high informative hub genes in the targeted gene module. Thus, we select a total of five hub genes that play critical roles in neuronal remodeling and identify them with functional enrichment analysis and protein-protein interaction network. Overall, this study provides insight into the underlying molecular mechanism of developmental neuronal remodeling in Drosophila melanogaster.


Sign in / Sign up

Export Citation Format

Share Document