scholarly journals Aquaculture and agriculture-by products as sustainable sources of omega-3 fatty acids in the food industry

eFood ◽  
2021 ◽  
Author(s):  
Jian Bo Xiao ◽  
Francisco Barba ◽  
Jesus Simal-Gandara ◽  
Miguel Prieto

The valorization of by-products is currently a matter of great concern to improve the sustainability of the food industry. High quality by-products derived from the food chain are omega-3 fatty acids, being fish the main source of docosahexaenoic acid and eicosapentaenoic acid. The search for economic and sustainable sources following the standards of circular economy had led to search for strategies that put in value new resources to obtain different omega-3 fatty acids, which could be further employed in the development of new industrial products without producing more wastes and economic losses. In this sense, seeds and vegetables, fruits and crustaceans by products can be an alternative. This review encompasses all these aspects on omega-3 fatty acids profile from marine and agri-food by-products together with their extraction and purification technologies are reported. These comprise conventional techniques like extraction with solvents, cold press, and wet pressing and, more recently proposed ones like, supercritical fluids fractionation and purification by chromatographic methods. The information collected indicates a trend to combine different conventional and emerging technologies to improve product yields and purity. This paper also addresses encapsulation strategies for their integration in novel foods to achieve maximum consumer acceptance and to ensure their effectiveness.

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1811
Author(s):  
Ella Aitta ◽  
Alexis Marsol-Vall ◽  
Annelie Damerau ◽  
Baoru Yang

Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2867
Author(s):  
Rui Ferreira ◽  
Sílvia Lourenço ◽  
André Lopes ◽  
Carlos Andrade ◽  
José S. Câmara ◽  
...  

Worldwide, the food industry generates a large number of by-products from a wide variety of sources. These by-products represent an interesting and economical source of added value components with potential functionalities and/or bioactivities, which might be explored for industrial purposes, encouraging and promoting the circular economy concept. In this context, the current work aimed to evaluate the fatty acids (FAs) profile using gas chromatography–flame ionization detector (GC–FID) and Fourier Transform Infrared (FTIR), as well as the determination of related health lipid indices (e.g., atherogenic (AI) and thrombogenic (TI)) as a powerful strategy to investigate the potential applications of different agri-food by-products for human nutrition and animal feeding. This work results showed that polyunsaturated fatty acids (PUFAs) are the predominant group in grape pomace (72.7%), grape bunches (54.3%), and brewer’s spent grain (BSG, 59.0%), whereas carrot peels are dominated by monounsaturated fatty acids (MUFAs, 47.3%), and grape stems (46.2%), lees (from 50.8 to 74.1%), and potato peels (77.2%) by saturated fatty acids (SFAs). These findings represent a scientific basis for exploring the nutritional properties of agri-food by-products. Special attention should be given to grape pomace, grape bunches, and BSG since they have a high content of PUFAs (from 54.3 to 72.7%) and lower AI (from 0.11 to 0.38) and TI (from 0.30 to 0.56) indexes, suggesting their potential to provide a variety of health benefits against cardiovascular diseases including well-established hypotriglyceridemia and anti-inflammatory effects, products to which they are added.


2021 ◽  
Author(s):  
Yi Liu ◽  
Deepika Dave

Marine by-products (heads, frames, trimmings, viscera, skin and scales) have been extensively investigated as sources of marine omega-3 fatty acids (mainly eicosapentaenoic acid and docosahexaenoic acid). Traditionally, extraction of fish...


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 339-340
Author(s):  
Sergiane A Araújo ◽  
Ronaldo L Oliveira ◽  
Analívia M Barbosa ◽  
Aline R Silva ◽  
Rebeca D X Ribeiro ◽  
...  

Abstract Lauric acid (LA) is an additive used in ruminant’s diet with the purpose of mitigating the methane effect. However, the presence of a certain amount of LA in the rumen can cause a reduction in the microbial population and ruminal metabolic processes, such as the biohydrogenation. This study aimed evaluate the effect of the LA inclusion in the diet of Nellore on the fatty acids profile of the meat. Thirty-two young Nellore bulls were used with an average age of 24-months. The animals were individually fed with a total mixed ration with 40% of roughage (Cynodon sp. hay) and 60% of concentrated mix, composed with ground corn, soybean meal, urea, mineral premix and LA in 0.0; 0.5; 1.0; 1.5% of inclusion in the total diet dry matter basis. Those amounts constituted the treatments. At the end of the trial, the animals were slaughtered and the meat was stored at -21oC, before analyses. The experimental design was completely randomized, with four treatments and eight replications. The data were submitted to regression analysis, and significance was declared when P < 0.05. There was no effect (P > 0.05) of the inclusion of LA in the sum of saturated fatty acids (∑SAF=43.45±1.55), monounsaturated fatty acids (∑MUFA=41.9±0.29), and polyunsaturated fatty acids (∑PUFA=12.25±1.40). The inclusion of LA in the diets also did not affect the sum of omega-3 fatty acids (∑ n-3=1.05±0.22), omega-6 fatty acids (∑ n-6=3.02±0.49, and the reason n-6: n-3 (2.91±0.12). The atherogenicity (0.65±0.05) and trombogenicity (1.47±0.10) indexes, important indexes to predict heart coronary diseases risk, were not affected by the inclusion of LA in the diet of the animals. The results suggest that LA can be included up to 1.5% (DM basis of total diet) in the diets of Nellore without causing any significant changes in the fatty acids profile of the meat.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 365
Author(s):  
Katarzyna Czyż ◽  
Ewa Sokoła-Wysoczańska ◽  
Anna Wyrostek ◽  
Paulina Cholewińska

This study aims to evaluate an effect of pig diet supplementation with ethyl esters derived from linseed oil with a high content of alpha-linolenic acid (ALA) on the fatty acids profile of meat. The study was conducted on Polish Landrace fatteners supplemented for a period of 7 weeks (control and experimental groups of 8 animals each, 16 in total). After this period, loin (Longissimus dorsi) and ham (Biceps femoris) samples were collected for laboratory analysis, including basic composition (fat, protein, ash, dry matter) and fatty acids (FAs) profile. The supplementation caused a significant increase in the level of ALA acid, decrease in the content of saturated fatty acids (SFAs), increase in unsaturated FAs level, and resulting decrease in the ratio of n-6/n-3. The indices of atherogenicity and thrombogenicity were beneficially altered in the experimental groups. It can thus be supposed that meat enriched this way may be considered as an interesting choice for consumers who are aware of the importance of diet consumed.


2010 ◽  
Vol 40 (2) ◽  
pp. 193-203 ◽  
Author(s):  
Hedieh Alavi Talab ◽  
Mehdi Ardjmand ◽  
Abbasali Motallebi ◽  
Reza Pourgholam

2018 ◽  
Vol 61 (3) ◽  
pp. 182-186
Author(s):  
Muhammad Ajmal ◽  
Muhammad Nadeem ◽  
Maryam Batool ◽  
Imran Taj Khan

Margarine is widely used as table spread, in cooking and bakery products. Awareness of consumers regarding the intake of omega fatty acids has led the food industry to develop foods which are rich sources of omega fatty acids. Harmful effects of trans on the development of cardiovascular diseases have steered the researchers to find out wide range of trans free options, without compromising on functional and physical properties of fats. Nutritionists recommend margarine for the growing and school going babies, it is usually manufactured from the combination of hard and soft fats, followed by the addition of vitamins A, D and E. However, little is known regarding the supplementation of margarines with omega fatty acids of chia oil. This paper summarizes the physical and chemical characteristics of few ingredients that may be  used  in  the  formulation  of  trans  free  margarine  with  higher  magnitude  of  omega  fatty  acids.


2021 ◽  
Vol 50 (8) ◽  
pp. 2271-2282
Author(s):  
Wawan Kosasih ◽  
Tina Rosmalina R. ◽  
Chandra Risdian ◽  
Endang Saepudin ◽  
Sri Priatni Sri Priatni

Production of omega-3 fatty acids from lemuru fish by-products was studied by enzymatic hydrolysis using a lipase enzyme in one liter of the batch reactor. The hydrolysis temperature of fish oil was set at 45 to 55 ℃ for 0 to 24 h, whereas agitation from 50 to 150 rpm. RSM-Box Bhenken was used to study the effect of these parameters on omega-3 (EPA, docosahexaenoic acid (DHA), and α-linolenic acid (ALA)) content. The % free fatty acid (FFA), acid index, peroxide index, iodine index, and saponification index of lemuru fish oil was 0.925, 2.52, 42.5, 97.28, and 160.11%, respectively. GC-MS analysis results showed that unsaturated fatty acids content (62.34%), which are consisted of omega-3 (EPA, DHA, and ALA), omega-6 and omega-9, was much higher than saturated acids (12.97%). The experiment data showed that the highest EPA (1.221%) and DHA (0.312%) content were reached at 50 ℃ and 24 h with 150 rpm of agitation. However, through the RSM-Box Bhenken analysis and 3D surface plot, it was suggested that the optimum condition was obtained at 45 ℃ and 24 h with 150 rpm of agitation with the content of EPA, DHA, and ALA were 1.709, 0.49, and 1.237%, respectively.


2020 ◽  
Vol 12 (21) ◽  
pp. 8997
Author(s):  
Massimo Lucarini ◽  
Antonio Zuorro ◽  
Gabriella Di Lena ◽  
Roberto Lavecchia ◽  
Alessandra Durazzo ◽  
...  

The feasibility of exploiting secondary raw materials from marine food-chains as a source of molecules of nutritional interest, to create high-value food products and to meet nutritional challenges, is described in this report. A reduction in food waste is urgent as many sectors of the food industry damage the environment by depleting resources and by generating waste that must be treated. The project herein described, deals with the recovery of natural molecules, omega-3 fatty acids (EPA, DHA) and of α-tocopherol, from fish processing by-products. This would promote the sustainable development of new food products for human nutrition, as well as nutraceuticals. The growing awareness of increasing omega-3 fatty acids intake, has focused attention on the importance of fish as a natural source of these molecules in the diet. Therefore, a study on the concentration of these bioactive compounds in such matrices, as well as new green methodologies for their recovery, are necessary. This would represent an example of a circular economy process applied to the seafood value chain. Fish processing by-products, so far considered as waste, can hopefully be reutilized as active ingredients into food products of high added-value, thus maximizing the sustainability of fish production.


Sign in / Sign up

Export Citation Format

Share Document