scholarly journals Sustainable Management of Secondary Raw Materials from the Marine Food-Chain: A Case-Study Perspective

2020 ◽  
Vol 12 (21) ◽  
pp. 8997
Author(s):  
Massimo Lucarini ◽  
Antonio Zuorro ◽  
Gabriella Di Lena ◽  
Roberto Lavecchia ◽  
Alessandra Durazzo ◽  
...  

The feasibility of exploiting secondary raw materials from marine food-chains as a source of molecules of nutritional interest, to create high-value food products and to meet nutritional challenges, is described in this report. A reduction in food waste is urgent as many sectors of the food industry damage the environment by depleting resources and by generating waste that must be treated. The project herein described, deals with the recovery of natural molecules, omega-3 fatty acids (EPA, DHA) and of α-tocopherol, from fish processing by-products. This would promote the sustainable development of new food products for human nutrition, as well as nutraceuticals. The growing awareness of increasing omega-3 fatty acids intake, has focused attention on the importance of fish as a natural source of these molecules in the diet. Therefore, a study on the concentration of these bioactive compounds in such matrices, as well as new green methodologies for their recovery, are necessary. This would represent an example of a circular economy process applied to the seafood value chain. Fish processing by-products, so far considered as waste, can hopefully be reutilized as active ingredients into food products of high added-value, thus maximizing the sustainability of fish production.

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1811
Author(s):  
Ella Aitta ◽  
Alexis Marsol-Vall ◽  
Annelie Damerau ◽  
Baoru Yang

Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.


2021 ◽  
Author(s):  
Yi Liu ◽  
Deepika Dave

Marine by-products (heads, frames, trimmings, viscera, skin and scales) have been extensively investigated as sources of marine omega-3 fatty acids (mainly eicosapentaenoic acid and docosahexaenoic acid). Traditionally, extraction of fish...


2021 ◽  
pp. 8-12
Author(s):  
Иван Александрович Кечкин ◽  
Георгий Несторович Панкратов ◽  
Ирина Сергеевна Витол

Введение в ежедневный рацион продуктов, обогащенных эссенциальными нутриентами, является актуальной задачей стратегии здорового питания. В этой связи особое место занимают продукты переработки зерна, как основы пирамиды здорового питания. Среди наиболее востребованных незаменимых нутриентов следует выделить полиненасыщенные жирные кислоты, и особенно жирные кислоты семейства ɷ-3. Главным источником линоленовой кислоты из растительного сырья является льняное масло, которое может быть введено в виде тонкоизмельченных семян льна в состав хлебопекарной муки. Химический состав продуктов питания на зерновой основе, полученных с использованием традиционной технологии, характеризуется недостаточной сбалансированностью, невысокой пищевой и биологической ценностью. В связи с этим с целью расширения ассортимента зерновых продуктов функциональной направленности общего, диетического и профилактического назначения на основе полизерновых смесей разработаны методология управления мукомольными свойствами зернового сырья при его переработке для получения продуктов питания на зерновой основе заданного состава и свойств; показана возможность совместного размола пшенично-льняной смеси с получением муки, обогащенной незаменимыми жирными кислотами (НЖК) - омега-3 (линоленовая кислота) и омега-6 (линолевая кислота); сформированы новые виды муки, обогащенные незаменимыми жирными кислотами; определены некоторые физико-химические характеристики пшеничной муки, обогащенной НЖК; выявлены особенности хлебопекарных свойств пшенично-льняной муки. На основании динамики изменения показателя кислотного числа жира (КЧЖ) спрогнозирован срок безопасного хранения пшенично-льняной муки, который составил 9,4 месяца. The introduction of foods fortified with essential nutrients into the daily diet is an urgent task of a healthy eating strategy. In this regard, grain processing products occupy a special place, as the basis of the pyramid of healthy nutrition. Among the most demanded essential nutrients are polyunsaturated fatty acids and especially fatty acids of the ɷ-3 family. The main source of linolenic acid from plant raw materials is linseed oil, which can be added in the form of finely ground flax seeds to baking flour. The chemical composition of grain-based food products obtained using traditional technology is characterized by insufficient balance, low nutritional and biological value. In this regard, in order to expand the range of functional grain products for general, dietary and prophylactic purposes on the basis of polygrain mixtures, the following have been developed: a methodology for controlling the milling properties of grain raw materials during its processing to obtain food products based on a grain basis of a given composition and properties; the possibility of joint grinding of a wheat-flax mixture to obtain flour enriched with essential fatty acids (EFA) - omega-3 (linolenic acid) and omega-6 (linoleic acid) is shown; formed new types of flour, enriched with essential fatty acids; some physicochemical characteristics of wheat flour enriched with EFA have been determined; the features of the baking properties of wheat-flax flour are revealed. Based on the dynamics of changes in the acid number of fat (FAT), the period of safe storage of wheat-flaxseed flour was predicted, which was 9.4 months.


2021 ◽  
Author(s):  
Muhammad Sajid Arshad ◽  
Waseem Khalid ◽  
Rabia Shabir Ahmad ◽  
Muhammad Kamran Khan ◽  
Muhammad Haseeb Ahmad ◽  
...  

Functional food is a whole ingredient or a part of food that used as food for specific therapeutic purposes. It is divided into two wide categories: Conventional and modified functional foods. Conventional functional Foods are composed of natural or whole-food ingredients that provide functional substances while modified functional is food or food products in which add additional ingredients for specific health purposes. Plant-based food such as fruits, vegetables, herbs, cereals, nuts and beans contain vitamins, minerals, fiber, omega-3 fatty acids, antioxidants and phenolic compounds that play a functional role in the human body against chronic diseases including cancer, cardiovascular and GIT-related disease. Some other foods or food products like juices, dairy products, fortified eggs and seafood are composed of functional components. Fish contain omega-3 fatty acids (EPA and DHA) that are played a functional role in heart health and brain development.


Fisheries ◽  
2020 ◽  
Vol 2020 (5) ◽  
pp. 38-50
Author(s):  
Olga Mezenova ◽  
A. Hoeling ◽  
T. Moersel ◽  
V. Volkov ◽  
Natalya Mezenova ◽  
...  

This research analyzes the economic indicators of the fishery complex of the Kaliningrad region in recent years. The introduction of modern biotechnological solutions in the fish processing sector is substantiated. At present, the industry focuses on oceanic and coastal fishing, large fish complexes are leading in fish processing. Food product groups are mainly represented by chilled and frozen semi-finished products. Among food fish products, the production of sterilized canned food predominates; in smaller quantities, preserves, salted, smoked, dried and dried fish products are produced. The fish factories practically do not process fish by-products and there is no production of fish meal. To improve the economic performance of the industry, it is promising to use innovative biotechnologies and advanced foreign experience, which allow processing the extracted raw materials with maximum added value. The Strategy for the Development of the Fisheries Industry of the Russian Federation until 2030, adopted in November 2019, outlines the prospects for the development of marine biotechnology in key segments - aquaculture, production of functional and biologically active products, processing of by-products. The article presents the volumes and problems of fish by-products processing accumulating at fish processing enterprises of the region. A complex scheme of biotechnological by-products processing with the production of valuable biologically active substances (proteins, lipids, mineral substances) is proposed. The technology and production line for the production of protein, protein-mineral and lipid preparations from secondary fish raw materials are described. A modular implementation of biotechnology in marine conditions is proposed. The economic calculation from the introduction of innovative biotechnology in the processing of secondary fat-containing fish raw materials is presented.


eFood ◽  
2021 ◽  
Author(s):  
Jian Bo Xiao ◽  
Francisco Barba ◽  
Jesus Simal-Gandara ◽  
Miguel Prieto

The valorization of by-products is currently a matter of great concern to improve the sustainability of the food industry. High quality by-products derived from the food chain are omega-3 fatty acids, being fish the main source of docosahexaenoic acid and eicosapentaenoic acid. The search for economic and sustainable sources following the standards of circular economy had led to search for strategies that put in value new resources to obtain different omega-3 fatty acids, which could be further employed in the development of new industrial products without producing more wastes and economic losses. In this sense, seeds and vegetables, fruits and crustaceans by products can be an alternative. This review encompasses all these aspects on omega-3 fatty acids profile from marine and agri-food by-products together with their extraction and purification technologies are reported. These comprise conventional techniques like extraction with solvents, cold press, and wet pressing and, more recently proposed ones like, supercritical fluids fractionation and purification by chromatographic methods. The information collected indicates a trend to combine different conventional and emerging technologies to improve product yields and purity. This paper also addresses encapsulation strategies for their integration in novel foods to achieve maximum consumer acceptance and to ensure their effectiveness.


2014 ◽  
Vol 1044-1045 ◽  
pp. 444-447 ◽  
Author(s):  
Thitiphan Chimsook

Nowadays, an awareness of health benefits of omega-3 has been found. Polyunsaturated fatty acids, especially DHA, are more attention due to their role in human health. Hence, this study investigated the potential of by-products as freshwater fish source of omega-3 polyunsaturated fatty acids (omega-3 PUFAs). The by-products of processing accounted for approximately 55% of the catfish industry. Supercritical fluid extraction (SFE) of the by-products at 35 MPa, 40 ◦C, ethanol (95%, v/v) as the co-solvent, and the mass ratio of by-products to co-solvent as 1:1 generated a lipid yield at 30.9% and 21.5 % docosahexaenoic acid (DHA). Additionally, urea complexation was an effective tool to enrich and purify DHA from lipids. DHA purity increased from 21.5% to 38.4% under the optimum complexation condition.


2021 ◽  
Vol 50 (8) ◽  
pp. 2271-2282
Author(s):  
Wawan Kosasih ◽  
Tina Rosmalina R. ◽  
Chandra Risdian ◽  
Endang Saepudin ◽  
Sri Priatni Sri Priatni

Production of omega-3 fatty acids from lemuru fish by-products was studied by enzymatic hydrolysis using a lipase enzyme in one liter of the batch reactor. The hydrolysis temperature of fish oil was set at 45 to 55 ℃ for 0 to 24 h, whereas agitation from 50 to 150 rpm. RSM-Box Bhenken was used to study the effect of these parameters on omega-3 (EPA, docosahexaenoic acid (DHA), and α-linolenic acid (ALA)) content. The % free fatty acid (FFA), acid index, peroxide index, iodine index, and saponification index of lemuru fish oil was 0.925, 2.52, 42.5, 97.28, and 160.11%, respectively. GC-MS analysis results showed that unsaturated fatty acids content (62.34%), which are consisted of omega-3 (EPA, DHA, and ALA), omega-6 and omega-9, was much higher than saturated acids (12.97%). The experiment data showed that the highest EPA (1.221%) and DHA (0.312%) content were reached at 50 ℃ and 24 h with 150 rpm of agitation. However, through the RSM-Box Bhenken analysis and 3D surface plot, it was suggested that the optimum condition was obtained at 45 ℃ and 24 h with 150 rpm of agitation with the content of EPA, DHA, and ALA were 1.709, 0.49, and 1.237%, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Muhammad Zia Shahid ◽  
Muhammad Imran ◽  
Muhammad Kamran Khan ◽  
Muhammad Haseeb Ahmad ◽  
Muhammad Nadeem ◽  
...  

Flaxseed is naturally a rich source of essential omega-3 fatty acid, α-linolenic acid (ALA), which exhibits nearly 57% of its entire fatty acid profile. Oxidation of omega-3 fatty acids during processing and storage results in reduced shelf stability of food products and limited health potentials. Spray-drying is considered a processing technique to shield omega-3 fatty acids from oxidative damage. For the purpose, the extracted flaxseed oil (FSO) together with the emulsifier (flaxseed meal polysaccharide gum) was passed through a mini spray-dryer to prepare spray-dried flaxseed oil (SDFSO) samples. The SDFSO samples for quality were evaluated at 0th, 30th, and 60th days of storage at two different temperatures of 4°C and 25°C, accordingly. The maximum oil protection efficiency was recorded as 90.78% at 160°C. The highest percentage for ALA retention was recorded as 54.7% and 53.9% at 4°C, while the lowest retention was observed as 48.6% and 46.2% at 25°C after 30 and 60 days of storage, respectively. The inlet (160°C) and outlet air temperatures (80°C) were considered as key factors contributing a decline in retention of ALA of the SDFSO samples. The free fatty acid contents of FSO and SDFSO samples reached to their peaks, i.e., 1.22% and 0.75%, respectively, after 60 days of storage at 25°C. The initial peroxide value of FSO (control) was 0.16, which increased to 0.34 (4°C) and 1.10 (25°C) meq/kg O2 at the end of 60 days storage. The value for malondialdehyde of SDFSO samples was increased from 0.17 (0 day) to 0.34 nmol/g of lipids at 60 days (4°C), and the same increasing trend was observed at 25°C. In the case of color and overall acceptability, the lowest evaluation scores were awarded to FSO samples in comparison to SDFSO samples. Overall, SDFSO possessed improved oxidative quality and can be recommended as a fortifying agent in various functional food products.


Sign in / Sign up

Export Citation Format

Share Document