scholarly journals INTERNET OF THINGS SECURITY FRAMEWORK

2021 ◽  
Vol 17 (1) ◽  
pp. 287-293
Author(s):  
Dorin IORDACHE

It was unimaginable for a non-professional user that access data to personal e-mail, bank or identity accounts could be stolen via a mobile phone interface or connection, no more than twenty years ago. Nowadays, people with bad intentions – hacker – can use smart devices, such as: webcams, microwaves, refrigerators, door controllers, and others, generically we named it IoT[1], to access accounts like the ones mentioned above, without much effort. The Internet of Things is the place where devices are digitally interconnected, interacts with almost every domain. IoT development is closely correlated with growing of Internet. These issues have generated an unprecedented upward trend in Wi-Fi and IoT interconnecting networks. Cyber-security has gained new meanings because of the increasing number and scope of IoT devices. By developing these devices, especially among regular users, it is necessary to improve their security more than ever. How prepared are regular users and how can they protect themselves in the context of IoT penetration into their daily lives? it is a question that needs to be answered, in terms of the actions it can take immediately or in the  long run.   [1] IoT - Internet of Things

2020 ◽  
Vol 1 (2) ◽  
pp. 1-12
Author(s):  
Ritu Chauhan ◽  
Gatha Tanwar

The internet of things has brought in innovations in the daily lives of users. The enthusiasm and openness of consumers have fuelled the manufacturers to dish out new devices with more features and better aesthetics. In an attempt to keep up with the competition, the manufacturers are not paying enough attention to cyber security of these smart devices. The gravity of security vulnerabilities is further aggravated due to their connected nature. As a result, a compromised device would not only stop providing the intended service but could also act as a host for malware introduced by an attacker. This study has focused on 10 manufacturers, namely Fitbit, D-Link, Edimax, Ednet, Homematic, Smarter, Osram, Belkin Wemo, Philips Hue, and Withings. The authors studied the security issues which have been raised in the past and the communication protocols used by devices made by these brands. It was found that while security vulnerabilities could be introduced due to lack of attention to details while designing an IoT device, they could also get introduced by the protocol stack and inadequate system configuration. Researchers have iterated that protocols like TCP, UDP, and mDNS have inherent security shortcomings and manufacturers need to be mindful of the fact. Furthermore, if protocols like EAPOL or Zigbee have been used, then the device developers need to be aware of safeguarding the keys and other authentication mechanisms. The authors also analysed the packets captured during setup of 23 devices by the above-mentioned manufacturers. The analysis gave insight into the underlying protocol stack preferred by the manufacturers. In addition, they also used count vectorizer to tokenize the protocols used during device setup and use them to model a multinomial classifier to identify the manufacturers. The intent of this experiment was to determine if a manufacturer could be identified based on the tokenized protocols. The modelled classifier could then be used to drive an algorithm to checklist against possible security vulnerabilities, which are characteristic of the protocols and the manufacturer history. Such an automated system will be instrumental in regular diagnostics of a smart system. The authors then wrapped up this report by suggesting some measures a user can take to protect their local networks and connected devices.


Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1492 ◽  
Author(s):  
Pantaleone Nespoli ◽  
David Useche Pelaez ◽  
Daniel Díaz López ◽  
Félix Gómez Mármol

The Internet of Things (IoT) became established during the last decade as an emerging technology with considerable potentialities and applicability. Its paradigm of everything connected together penetrated the real world, with smart devices located in several daily appliances. Such intelligent objects are able to communicate autonomously through already existing network infrastructures, thus generating a more concrete integration between real world and computer-based systems. On the downside, the great benefit carried by the IoT paradigm in our life brings simultaneously severe security issues, since the information exchanged among the objects frequently remains unprotected from malicious attackers. The paper at hand proposes COSMOS (Collaborative, Seamless and Adaptive Sentinel for the Internet of Things), a novel sentinel to protect smart environments from cyber threats. Our sentinel shields the IoT devices using multiple defensive rings, resulting in a more accurate and robust protection. Additionally, we discuss the current deployment of the sentinel on a commodity device (i.e., Raspberry Pi). Exhaustive experiments are conducted on the sentinel, demonstrating that it performs meticulously even in heavily stressing conditions. Each defensive layer is tested, reaching a remarkable performance, thus proving the applicability of COSMOS in a distributed and dynamic scenario such as IoT. With the aim of easing the enjoyment of the proposed sentinel, we further developed a friendly and ease-to-use COSMOS App, so that end-users can manage sentinel(s) directly using their own devices (e.g., smartphone).


Author(s):  
Yong Kyu Lee

This chapter reviews the internet of things (IoT) as a key component of a smart city and how it is applied to consumers' daily lives and business. The IoT is a part of information and communication technology (ICT) and is considered a powerful means to improve consumers' quality of life. The “thing” could be any object which has internet capability, such as wearable devices and smart TVs/phones/speakers. Several studies have identified driving factors that have led consumers to adopting them, but also concerns of consumers' resistance to IoT devices. The three major fields of application of IoT technologies were selected to review the role of the IoT in consumers' daily lives and business.


2020 ◽  
Author(s):  
Tanweer Alam

<p>Peoples are naturally communicators but devices are not. In the Internet of Things (IoT) architecture, the smart devices (SDs), sensors, programs and association of smart objects are connected together to transfer information among them. The SD is designed as physical device linked with computing resources that are capable to connect and communicate with another SD through any medium and protocol. The communication among intelligent physical things is a challenging task to exchange information that guaranteed to reach to the destination completely in a real time with the same order as sending without corruption. The reliable communication between physical things can be built in the transmission control protocol (TCP) layers. In TCP layer, the reliable communication is required the error detection, correction and confirmation to exchange information among smart devices. In this paper, the author represents a framework to deal with reliability issues to enable the adoption of IoT devices. The results found the improvement in reliability. </p>


2020 ◽  
Author(s):  
Tanweer Alam

<p>Peoples are naturally communicators but devices are not. In the Internet of Things (IoT) architecture, the smart devices (SDs), sensors, programs and association of smart objects are connected together to transfer information among them. The SD is designed as physical device linked with computing resources that are capable to connect and communicate with another SD through any medium and protocol. The communication among intelligent physical things is a challenging task to exchange information that guaranteed to reach to the destination completely in a real time with the same order as sending without corruption. The reliable communication between physical things can be built in the transmission control protocol (TCP) layers. In TCP layer, the reliable communication is required the error detection, correction and confirmation to exchange information among smart devices. In this paper, the author represents a framework to deal with reliability issues to enable the adoption of IoT devices. The results found the improvement in reliability. </p>


2021 ◽  
Author(s):  
Tanweer Alam

In the age of next-generation computer, the role of the cloud, the internet and smart devices will become stronger. These days we all know the word smart well. This word is often used in our daily lives. The Internet of Things (IoT) will generate a variety of information from a variety of resources. It can store big data in the cloud. Fog computing acts as a signal between cloud and IoT. Fog extensions in this framework apply to material under IoT. IoT devices are called Fog nodes, which can be accessed anywhere within the network range. A blockchain is a novel way of recording in a secure sequence. Creating a new framework in the development of Internet of Things is one of the critical problems of wireless communication where solving such a problem can lead to continued growth in the use and popularity of IoT. Proposed research creates a framework for providing a framework for middleware on the internet of smart devices network for the internet of things using blockchains technology. Our great offering connects new research that integrates blockchains into the Internet of Things and provides secure Internet connection for smart devices. Blockchain (BC) Internet of Things (IoT) is a new technology that works with low-level, distributed, public and real-time leaders to maintain transactions between IoT sites. A blockchain is a series of blocks, each block being linked to its previous blocks. All blocks have cryptographic hash code, previous block hash, and its data. Transactions in BC are the basic components used to transfer data between IoT nodes. IoT nodes are a variety of portable but smart devices with embedded sensors, actuators, systems and the ability to communicate with other IoT nodes. The role of BC in IoT is to provide a process for processing secure data records using IoT nodes. BC is a protected technology that can be used publicly and openly. IoT requires this type of technology to allow secure communication between IoT nodes in different environments. Events in BC can be tracked and monitored by anyone who is certified to communicate within IoT.


2021 ◽  
Author(s):  
Tanweer Alam

<p>In the age of next-generation computer, the role of the cloud, the internet and smart devices will become stronger. These days we all know the word smart well. This word is often used in our daily lives. The Internet of Things (IoT) will generate a variety of information from a variety of resources. It can store big data in the cloud. Fog computing acts as a signal between cloud and IoT. Fog extensions in this framework apply to material under IoT. IoT devices are called Fog nodes, which can be accessed anywhere within the network range. A blockchain is a novel way of recording in a secure sequence. Creating a new framework in the development of Internet of Things is one of the critical problems of wireless communication where solving such a problem can lead to continued growth in the use and popularity of IoT. Proposed research creates a framework for providing a framework for middleware on the internet of smart devices network for the internet of things using blockchains technology. Our great offering connects new research that integrates blockchains into the Internet of Things and provides secure Internet connection for smart devices. Blockchain (BC) Internet of Things (IoT) is a new technology that works with low-level, distributed, public and real-time leaders to maintain transactions between IoT sites. A blockchain is a series of blocks, each block being linked to its previous blocks. All blocks have cryptographic hash code, previous block hash, and its data. Transactions in BC are the basic components used to transfer data between IoT nodes. IoT nodes are a variety of portable but smart devices with embedded sensors, actuators, systems and the ability to communicate with other IoT nodes. The role of BC in IoT is to provide a process for processing secure data records using IoT nodes. BC is a protected technology that can be used publicly and openly. IoT requires this type of technology to allow secure communication between IoT nodes in different environments. Events in BC can be tracked and monitored by anyone who is certified to communicate within IoT.</p>


2021 ◽  
Author(s):  
Mehdia Ajana El Khaddar

The Internet of Things (IoT), along with its wider variants including numerous technologies, things, and people: the Internet of Everything (IoE) and the Internet of Nano Things (IoNT), are considered as part of the Internet of the future and ubiquitous computing allowing the communication among billions of smart devices and objects, and have recently drawn a very significant research attention. In these approaches, there are varieties of heterogeneous devices empowered by new capabilities and interacting with each other to achieve specific applications in different domains. A middleware layer is therefore required to abstract the physical layer details of the smart IoT devices and ease the complex and challenging task of developing multiple backend applications. In this chapter, an overview of IoT technologies, architecture, and main applications is given first and then followed by a comprehensive survey on the most recently used and proposed middleware solutions designed for IoT networks. In addition, open issues in IoT middleware design and future works in the field of middleware development are highlighted.


Author(s):  
Keyurbhai Arvindbhai Jani ◽  
Nirbhay Chaubey

The Internet of Things (IoT) connects different IoT smart objects around people to make their life easier by connecting them with the internet, which leads IoT environments vulnerable to many attacks. This chapter has few main objectives: to understand basics of IoT; different types of attacks possible in IoT; and prevention steps to secure IoT environment at some extent. Therefore, this chapter is mainly divided into three parts. In first part discusses IoT devices and application of it; the second part is about cyber-attacks possible on IoT environments; and in the third part is discussed prevention and recommendation steps to avoid damage from different attacks.


Sign in / Sign up

Export Citation Format

Share Document