Undrained Creep Characteristics of Silty Sands and Comparative Study of Creep model

2012 ◽  
Vol 54 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Tae-Ho Bong ◽  
Young-Hwan Son ◽  
Soo-Kack Noh ◽  
Jae-Sung Park
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 983
Author(s):  
Shixu Wu ◽  
Keting Tong ◽  
Jianmin Wang ◽  
Yushun Li

To expand the application of bamboo as a building material, a new type of box section composite column that combined bamboo and steel was considered in this paper. The creep characteristics of eight bamboo-steel composite columns with different parameters were tested to evaluate the effects of load level, section size and interface type under long-term loading. Then, the deformation development of the composite column under long-term loading was observed and analyzed. In addition, the creep-time relationship curve and the creep coefficient were created. Furthermore, the creep model of the composite column was proposed based on the relationship between the creep of the composite column and the creep of bamboo, and the calculated value of creep was compared with the experimental value. The experimental results showed that the creep development of the composite column was fast at first, and then became stable after about 90 days. The creep characteristics were mainly affected by long-term load level and section size. The creep coefficient was between 0.160 and 0.190. Moreover, the creep model proposed in this paper was applicable to predict the creep development of bamboo-steel composite columns. The calculation results were in good agreement with the experimental results.


2011 ◽  
Vol 105-107 ◽  
pp. 832-836 ◽  
Author(s):  
Shu Ren Wang ◽  
Hui Hui Jia

Under low stress conditions, when the load exerting on the mined-out areas roof is less than the rock long-term strength, the rock roof will generate some creep deformation. In order to prevent the roof of the mined-out areas suddenly collapse, and to ensure the operator and construction equipment above the mined-out areas safety, it is an important security technical problem to reveal the creep characteristics of the shallow mined-out areas roof. Taking the mined-out areas of Antaibao Surface Mine as background, considering the rheological properties of rock roof, and assuming the roof was a rectangular thick plate, the creep characteristics of mined-out areas roof were analysed by applying the thick plate theory and Kelvin creep model. The regression equation of the roof deflection increment over time was given, and the creep characteristics of the shallow mined-out areas roof were revealed also.


2010 ◽  
Vol 29-32 ◽  
pp. 2614-2619 ◽  
Author(s):  
Jun Guang Wang ◽  
Bing Liang

to study oil shale creep properties, we use rock SJ-1B three-axis creep instrument on oil shale to carry three axis creep test. Through test results, the creep of oil shale is nonlinear, and in accelerating creep stage oil shale injury increased dramatically. Using Burgers creep model introduced damage variable to analyse the oil shale surrounding stress and displacement field and Systematically analyse the creep properties under various support intensity. So it has important theoretical significance and value for the oil shale resource development and roadway stability control.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bin Xiao ◽  
Minyun Hu ◽  
Peijiao Zhou ◽  
Yuke Lu ◽  
Yong Zhang

As one of the basic mechanical properties of soil, the creep property of a given type soil is related to stress path, and stress level. In this paper, triaxial shear creep tests under different deviatoric stress levels were performed on both intact sample and the reconstituted sample of clay taken from Hangzhou, China. Based on the Boltzmann linear superposition principle, the creep curves of the clay sample under different levels of deviatoric stress were obtained, and the creep characteristics of the intact sample and the reconstituted sample were compared in both total stress creep analysis and effective stress creep analysis. Furthermore, the creep curves were fitted using a hyperbolic creep model. The results show that (1) under the same stress level, the creep of intact sample evolves more than that of reconstituted sample; (2) the hyperbolic creep model is suited to describe the creep characteristics of intact and reconstituted clay, and the model parameters A s and B s can be linearly correlated to the stress level D r ; (3) for the application of the hyperbolic model, the total stress analysis works better, and the model parameters A s and B s can be determined by a linear relationship with Dr.


The recognition of the relevance of creep to concrete structures approx. 80 years ago marked the onset of an extensive research on the creep characteristics of concrete that were found to be rather complex. The findings from this research over decades have been incorporated in constitutive models for creep, which are necessary to enable a reliable design and analysis of concrete structures. This paper pays emphasis to major developments and the background of these models. The underlying principles of the constitutive behaviour and related modelling is depicted. The focus is laid to the models presented by CEB/fib, in particular to the creep model in the fib Model Code 2010. This model will be briefly presented and also discussed in view of its prediction accuracy. Further improvements are indicated and new developments are exemplarily addressed.


2016 ◽  
Vol 34 (4) ◽  
pp. 1193-1198 ◽  
Author(s):  
Wei-yao Guo ◽  
Yun-liang Tan ◽  
Tong-bin Zhao ◽  
Xiao-ming Liu ◽  
Qing-heng Gu ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jun Feng ◽  
Yue Ma ◽  
Zaobao Liu

The present study takes the ratio of the matric suction to the net vertical stress and the ratio of the matric suction to the net mean stress as new unsaturated stress levels f and F , respectively. Based on the laboratory tests and theoretical derivation, the modified one-dimensional Mesri creep model and three-dimensional creep model were established, which takes the unsaturated stress level into account. Then, the one-dimensional and three-dimensional creep characteristics of the unsaturated viscous subsoil of an airport under different unsaturated stress levels were analyzed. The following conclusions could be drawn: (1) under different stress levels, the one-dimensional creep deformation of unsaturated soil has a power function relationship with time, and the change rate exponentially decreases with the stress level, which can be well-expressed by the proposed modified one-dimensional Mesri creep model; (2) under different stress levels, the three-dimensional creep strain of the unsaturated soil shows a hyperbolic curve with time and a near-linear relationship at the semilogarithmic coordinate, which can be well-expressed by the proposed modified three-dimensional creep model; (3) under different stress levels, both the one-dimensional creep and three-dimensional creep of the unsaturated soil can be divided into two stages, which are the accelerated creep stage and stable creep stage.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Lei Zhang ◽  
Guoxin Zhang ◽  
Lixiang Wang ◽  
Zhaosong Ma ◽  
Shihai Li

The parallelization of 2D/3D software SAPTIS is discussed for nonlinear analysis of complex structures. A comparative study is made on different parallel solvers. The numerical models are presented, including hydration models, water cooling models, modulus models, creep model, and autogenous deformation models. A finite element simulation is made for the whole process of excavation and pouring of dams using these models. The numerical results show a good agreement with the measured ones. To achieve a better computing efficiency, four parallel solvers utilizing parallelization techniques are employed: (1) a parallel preconditioned conjugate gradient (PCG) solver based on OpenMP, (2) a parallel preconditioned Krylov subspace solver based on MPI, (3) a parallel sparse equation solver based on OpenMP, and (4) a parallel GPU equation solver. The parallel solvers run either in a shared memory environment OpenMP or in a distributed memory environment MPI. A comparative study on these parallel solvers is made, and the results show that the parallelization makes SAPTIS more efficient, powerful, and adaptable.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xinrong Liu ◽  
Xin Yang ◽  
Junbao Wang

Creep characteristics are integral mechanical properties of rock salt and are related to both long-term stability and security of rock salt repository. Rock salt creep properties are studied in this paper through employing combined methods of theoretical analysis and numerical simulation with a nonlinear creep model and the secondary development in FLAC3Dsoftware. A numerical simulation of multistage loading creep was developed with the model and resulting calculations were found consequently to coincide with previously tested data.


Sign in / Sign up

Export Citation Format

Share Document