scholarly journals Histone Deacetylase Inhibition and Dietary Short-Chain Fatty Acids

ISRN Allergy ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Paul V. Licciardi ◽  
Katherine Ververis ◽  
Tom C. Karagiannis

Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions such as probiotic supplementation have been investigated for their pleiotropic effects on microbiota composition and immune function. Probiotics may restore intestinal dysbiosis and improve clinical disease through elevated SCFA levels in the intestine. Although the precise mechanisms by which such dietary factors mediate these effects, SCFA metabolites such as butyrate also function as histone deacetylase inhibitors (HDACi), that can act on the epigenome through chromatin remodeling changes. The aim of this review is to provide an overview of HDAC enzymes and to discuss the biological effects of HDACi. Further, we discuss the important relationship between diet and the balance between health and disease and how novel dietary interventions such as probiotics could be alternative approach for the prevention and/or treatment of chronic inflammatory disease through modulation of the intestinal microbiome.

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 802 ◽  
Author(s):  
Per G Farup ◽  
Jørgen Valeur

The gut microbiota and their metabolites, e.g., short-chain fatty acids (SCFA), are associated with obesity. The primary aims were to study faecal SCFA levels and the changes in SCFA levels after weight-loss interventions in subjects with obesity, and secondarily, to study factors associated with the faecal SCFA levels. In total, 90 subjects (men / women: 15/75) with a mean age of 44.4 (SD 8.4) years, BMI 41.7 (SD 3.7) kg/m2 and morbid obesity (BMI > 40 or > 35 kg/m2 with obesity-related complications) were included. Faecal SCFA and other variables were measured at inclusion and after a six-month conservative weight-loss intervention followed by bariatric surgery (Roux-en-Y gastric bypass or gastric sleeve). Six months after surgery, the total amount of SCFA was reduced, the total and relative amounts of the main straight SCFA (acetic-, propionic-, and butyric- acids) were reduced, and the total and relative amounts of branched SCFA (isobutyric-, isovaleric-, and isocaproic- acids) were increased. The changes indicate a shift toward a proteolytic fermentation pattern with unfavorable health effects. The amount of SCFA was associated with the diet but not with metabolic markers or makers of the faecal microbiota composition. Dietary interventions could counteract the unfavorable effects.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jinjin Zhang ◽  
Hui Zhang ◽  
Miao Liu ◽  
Yawen Lan ◽  
Huiyuan Sun ◽  
...  

Short-chain fatty acids (SCFAs) are mainly produced by microbiota through the fermentation of carbohydrates in the intestine. Acetate, propionate, and butyrate are the most abundant SCFA metabolites and have been shown to be important in the maintenance of host health. In this study, head kidney macrophages (HKMs) were isolated and cultured from turbots. We found that the antibacterial activity of HKMs was increased after these cells were incubated with sodium butyrate, sodium propionate or sodium acetate. Interestingly, our results showed that all three SCFAs enhanced the expression of hypoxia inducible factor-1 α (HIF-1α) in HKMs, and further study confirmed that butyrate augmented the oxygen consumption of these cells. Moreover, HIF-1α inhibition diminished the butyrate-promoted intracellular bacterial killing activity of macrophages, and SCFAs also raised the gene expression and activity of lysozymes in HKMs via HIF-1α signaling. In addition, our results suggested that butyrate induced HIF-1α expression and the bactericidal activity of HKMs through histone deacetylase inhibition, while G protein-coupled receptors did not contribute to this effect. Finally, we demonstrated that butyrate induced a similar response in the murine macrophage cell line RAW264.7. In conclusion, our results demonstrated that SCFAs promoted HIF-1α expression via histone deacetylase inhibition, leading to the enhanced production of antibacterial effectors and increased bacterial killing of macrophages.


2020 ◽  
pp. 153537022097995
Author(s):  
Jisun HJ Lee ◽  
Jiangjiang Zhu

As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.


2014 ◽  
pp. 91-119 ◽  
Author(s):  
Jian Tan ◽  
Craig McKenzie ◽  
Maria Potamitis ◽  
Alison N. Thorburn ◽  
Charles R. Mackay ◽  
...  

mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. e02566-18 ◽  
Author(s):  
Nielson T. Baxter ◽  
Alexander W. Schmidt ◽  
Arvind Venkataraman ◽  
Kwi S. Kim ◽  
Clive Waldron ◽  
...  

ABSTRACT Production of short-chain fatty acids (SCFAs), especially butyrate, in the gut microbiome is required for optimal health but is frequently limited by the lack of fermentable fiber in the diet. We attempted to increase butyrate production by supplementing the diets of 174 healthy young adults for 2 weeks with resistant starch from potatoes (RPS), resistant starch from maize (RMS), inulin from chicory root, or an accessible corn starch control. RPS resulted in the greatest increase in total SCFAs, including butyrate. Although the majority of microbiomes responded to RPS with increases in the relative abundance of bifidobacteria, those that responded with an increase in Ruminococcus bromii or Clostridium chartatabidum were more likely to yield higher butyrate concentrations, especially when their microbiota were replete with populations of the butyrate-producing species Eubacterium rectale. RMS and inulin induced different changes in fecal communities, but they did not generate significant increases in fecal butyrate levels. IMPORTANCE These results reveal that not all fermentable fibers are equally capable of stimulating SCFA production, and they highlight the importance of the composition of an individual’s microbiota in determining whether or not they respond to a specific dietary supplement. In particular, R. bromii or C. chartatabidum may be required for enhanced butyrate production in response to RS. Bifidobacteria, though proficient at degrading RS and inulin, may not contribute to the butyrogenic effect of those fermentable fibers in the short term.


2021 ◽  
Vol 7 (2) ◽  
pp. e000930
Author(s):  
Ryan A Carey ◽  
Doreen Montag

The human body is host to a multitude of bacteria, fungi, viruses and other species in the intestine, collectively known as the microbiota. Dietary carbohydrates which bypass digestion and absorption are broken down and fermented by the microbiota to produce short-chain fatty acids (SCFAs). Previous research has established the role of SCFAs in the control of human metabolic pathways. In this review, we evaluate SCFAs as a metabolic regulator and how they might improve endurance performance in athletes. By looking at research conducted in animal models, we identify several pathways downstream of SCFAs, either directly modulating metabolic pathways through second messenger pathways or through neuronal pathways, that contribute to energy utilisation. These pathways contribute to efficient energy metabolism and are thus key to maximising substrate utilisation in endurance exercise. Future research may prove the usefulness of targeted dietary interventions allowing athletes to maximise their performance in competition.


2014 ◽  
Author(s):  
John M. Rumberger ◽  
Jonathan R.S. Arch ◽  
Allan Green

We determined the effect of butyrate and other short-chain fatty acids (SCFA) on rates of lipolysis in 3T3-L1 adipocytes. Prolonged treatment with butyrate (5 mM) increased the rate of lipolysis approximately 2-3-fold. Aminobutyric acid and acetate had little or no effect on lipolysis, however propionate stimulated lipolysis, suggesting that butyrate and propionate act through their shared activity as histone deacetylase (HDAC) inhibitors. Consistent with this, the HDAC inhibitor trichostatin A (1 μM) also stimulated lipolysis to a similar extent as did butyrate. Western blot data suggested that neither mitogen-activated protein kinase (MAPK) activation nor perilipin down-regulation are necessary for SCFA-induced lipolysis. Stimulation of lipolysis with butyrate and trichostatin A was glucose-dependent. Changes in AMP-activated protein kinase (AMPK) phosphorylation mediated by glucose were independent of changes in rates of lipolysis. The glycolytic inhibitor iodoacetate prevented both butyrate- and Tumor necrosis factor-alpha-(TNF-α ) mediated increases in rates of lipolysis indicating glucose metabolism is required. However, unlike TNF-α - , butyrate-stimulated lipolysis was not associated with increased lactate release or inhibited by activation of pyruvate dehydrogenase (PDH) with dichloroacetate. These data demonstrate an important relationship between lipolytic activity and reported HDAC inhibitory activity of butyrate, other short-chain fatty acids and trichostatin A. Given that HDAC inhibitors are presently being evaluated for the treatment of diabetes and other disorders, more work will be essential to determine if these effects on lipolysis are due to inhibition of HDAC.


2018 ◽  
Author(s):  
Thomas Mitchell Schmidt ◽  
Nielson T Baxter ◽  
Clive Waldron ◽  
Schmidt W. Alexander ◽  
Arvind Venkataraman ◽  
...  

Production of short-chain fatty acids (SCFAs), especially butyrate, in the gut microbiome is required for optimal health but is frequently limited by the lack of fermentable fiber in the diet. We attempted to increase butyrate production by supplementing the diets of 174 healthy young adults for two weeks with resistant starch from potatoes (RPS), resistant starch from maize (RMS), inulin from chicory root, or an accessible corn starch control. RPS resulted in the greatest increase in total SCFAs, including butyrate. Although the majority of microbiomes responded to RPS with increases in the relative abundance of bifidobacteria, those that responded with an increase in Ruminococcus bromii or Clostridium chartatabidum were more likely to yield higher butyrate concentrations, especially when their microbiota were replete with populations of the butyrate-producing species Eubacterium rectale. RMS and inulin induced different changes in fecal communities, but they did not generate significant increases in fecal butyrate levels.


Sign in / Sign up

Export Citation Format

Share Document