scholarly journals An Overview on Nanocrystalline ZnFe2O4, MnFe2O4, and CoFe2O4 Synthesized by a Thermal Treatment Method

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mahmoud Goodarz Naseri ◽  
Elias B. Saion ◽  
Ahmad Kamali

This study reports the simple synthesis of MFe2O4 (where M=Zn, Mn, and Co) nanoparticles by a thermal treatment method, followed by calcination at various temperatures from 723 to 873 K. Poly(vinyl pyrrolidone) (PVP) was used as a capping agent to stabilize the particles and prevent them from agglomeration. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The average particle sizes were obtained by TEM images, which were in good agreement with the XRD results. Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of metal oxide bands for all the calcined samples. Magnetic properties were demonstrated by a vibrating sample magnetometer (VSM), which displayed that the calcined samples exhibited superparamagnetic and ferromagnetic behaviors.


2018 ◽  
Vol 928 ◽  
pp. 106-112 ◽  
Author(s):  
Abdallah Yousef Mohammed Ali ◽  
Ahmed H. El-Shazly ◽  
M.F. Elkady ◽  
S.E. AbdElhafez

The prime purpose of the current study was to investigate the consequence of surfactant on the kinematic viscosity, thermal conductivity, and stability of MgO-oil based nanofluid. Magnesia (MgO) nanoparticles were prepared by the wet chemical method. Structural and morphological analysis of synthesized nanoparticles were performed via X-ray diffraction (XRD) and Transmission electron microscope (TEM). Subsequently, nanofluid was prepared at a solid concentration of 0.025% in presence of various surfactants with the aid of ultrasonic technique. The impact of the different surfactants (Cetyl Trimethyl Ammonium Bromide (CTAB), Poly Vinyl Pyrrolidone (PVP), Poly Vinyl Alcohol (PVA), and Oleic Acid) on the nanofluid stability was tested. It was evident that CTAB and PVA surfactants establish the most stable prepared MgO-oil based nanofluid. The experiments revealed that the maximum UV–Vis absorbance of the solution corresponds to the dispersion of CTAB in the base fluid.



2015 ◽  
Vol 1107 ◽  
pp. 291-294 ◽  
Author(s):  
Naif Mohammed Al-Hada ◽  
Elias B. Saion ◽  
Abdul H. Shaari ◽  
Mazliana A. Kamarudeen ◽  
Moayad Husein Flaifel ◽  
...  

Cadmium oxide (CdO) nanoparticles was synthesized from an aqueous solution containing metal nitrate as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent by simple thermal-treatment method. The as-synthesized sample has been calcined at various temperatures from 500 to 650 °C to remove the organic matters. The structure and morphology of the calcined oxide nanoparticles have been examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The results obtained supports the fact that the thermal treatment method utilized for the synthesis of CdO nanoparticles is certainly a very simple and low cost technique that requires no additional chemicals.



2011 ◽  
Vol 228-229 ◽  
pp. 639-644 ◽  
Author(s):  
Jian Lin Xu ◽  
Shu Hua Yang ◽  
Li Hui Zhang ◽  
Zhao Kang ◽  
Qiang Guo

The nano-antimony particles with different shape, size and stability are prepared by electrochemical method under the dilute hydrochloric acid electrolyte including the surface dispersant OP-10 and different current densities. The influences of current density on the shape and size of nanometer antimony particles prepared by electrochemical method are analyzed by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The results show that nano-antimony powder can be prepared by electrochemical method, and the antimony powder possesses the crystal structure with orthorhombic hexahedron. The current density has a significant impact on the agglomeration, shape and size of antimony powder. The size and shape of antimony powder are determined by the nucleation rate of nano-antimony and combination capacity of antimony ions and OP-10 surface dispersing agents affected by current density. When the current density is 25mA/cm2, the average particle size is 12nm or so, the shape is spherical, and the nano-antimony particles are well dispersed and no agglomeration.



2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Thapelo P. Mofokeng ◽  
Makwena J. Moloto ◽  
Poslet M. Shumbula ◽  
Pardon Nyamukamba ◽  
Pierre K. Mubiayi ◽  
...  

The synthesis of polydispersed zinc sulphide and copper sulphide nanocrystals capped with polar L-alanine (Aln) and l-aspartic acid (Asp) molecules is reported. The resulting nanocrystals were characterized by UV-visible spectroscopy (UV-Vis), photoluminescence (PL), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). UV-Vis absorption spectra of all samples were blue-shifted from the bulk band edges due to quantum confinement effects. PL emission spectrum of the nanoparticles showed peaks at 453 and 433 nm for Aln-capped ZnS and CuS nanoparticles, respectively, while peaks for Asp-capped ZnS and CuS nanoparticles were observed at 455 and 367 nm, respectively. The average particle sizes for Aln-capped ZnS and Asp-capped ZnS nanoparticles synthesized at 35°C were measured to be 2.88 nm and 1.23 nm, respectively. The antibacterial properties were tested using different strains of both positive and negative bacteria and fungi. It was found that capped-copper sulphide nanoparticles were more effective against the bacteria than capped-zinc sulphide nanoparticles. Staphylococcus aureus (ATCC 25923) was the most susceptible one with an MIC of 0.05 mg/mL for uncapped-CuS nanoparticles while Pseudomonas aeruginosa (ATCC 15442) and Cryptococcus neoformans (ATCC 14116) were the least ones with the MIC of 3.125 mg/mL for both uncapped-CuS and Aln-capped CuS.



Author(s):  
Harish Kumar ◽  
Renu Rani

ZnO nanoparticles were synthesized by microemulsion route in W/S ratio of 5 at room temperature. X-ray diffraction (XRD) pattern reveals wurtzite structure of ZnO nanoparticles. Rod shape of ZnO nanoparticles of average particle size 10.0 to 12.0 nm were observed by transmission electron microscopy. FT-IR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and presence of Zn-O bonding. Thermal studies were carried out by the differential scanning calorimeter (DSC) techniques. In addition, UV-Visible spectra were employed to estimate the band gap energy of ZnO nanoparticles.



2017 ◽  
Vol 36 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Sousan Gholamrezaei ◽  
Masoud Salavati-Niasari ◽  
Hassan Hadadzadeh ◽  
Mohammad Taghi Behnamfar

AbstractCo3O4 nanostructures have been synthesized via a hydrothermal-assisted thermal treatment process. A new complex formulated as [Co(py)2(H2O)2(NO3)2] was synthesized, and then used to prepare Co3O4 nanostructures. Cubic phase of spinel Co3O4 nanostructures with particle size of about 39 nm could be produced after calcination of the Co(OH)2 materials prepared with hydrothermal method at 160 °C for 15 h. Using of inorganic precursors decreased the time and temperature of Co3O4 preparation. The effect of pH on the morphology of the product s synthesized by hydrothermal reactions was investigated. It was found that the best morphology was achieved on pH=8, where was not prepared any precipitation. In this method, we could decrease the reaction temperature in synthetic rout to fabricate Co3O4 nanostructures. Nanostructures were characterized by SEM, TEM, X-ray diffraction (XRD), UV–visible, Fourier transformed infrared (FT-IR) spectroscopy and Nuclear magnetic resonance (1H-NMR).



2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Mohammad Taghi Satoungar ◽  
Hamed Azizi ◽  
Saeid Fattahi ◽  
Mohammad Khajeh Mehrizi ◽  
Hedieh Fallahi

Synthesis and characterization of multiple crystalline silver nanowires (NWs) with uniform diameters were carried out by using 1,2-propandiol and ethylene glycol (EG) as comediated solvents and FeCl3as mediated agent in the presence of poly(vinyl pyrrolidone) (PVP). Experimental data and structural characterizations revealed that AgNWs have evolved from the multiple crystalline seeds initially generated by reduction of AgNO3with EG and 1,2-propandiol followed by reducing Fe(III) to Fe(II) which in turn reacts with and removes adsorbed atomic oxygen from the surfaces of silver seeds. In addition, uniform silver nanowires were obtained by using FeCl2and AlCl3as mediated agents in EG solution. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) showed uniform nanowires in both diameter and length. UV-Vis spectra showed adsorption peaks confirming the formation of nanowires. X-ray diffraction (XRD) patterns displayed the final product with high crystallinity and purity. In this study, a growth mechanism for forming AgNWs was proposed and a comparison between different mediated agents was carried out.



2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Mahmoud Goodarz Naseri ◽  
Elias B. Saion ◽  
Hossein Abbastabar Ahangar ◽  
Abdul Halim Shaari ◽  
Mansor Hashim

Crystalline, magnetic, cobalt ferrite nanoparticles were synthesized from an aqueous solution containing metal nitrates and polyvinyl pyrrolidone (PVP) as a capping agent by a thermal treatment followed by calcination at various temperatures from 673 to 923 K. The structural characteristics of the calcined samples were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). A completed crystallization occurred at 823 and 923 K, as shown by the absence of organic absorption bands in the FT-IR spectrum. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors.



2008 ◽  
Vol 8 (8) ◽  
pp. 3921-3925 ◽  
Author(s):  
Biao Dong ◽  
Hongwei Song ◽  
Ruifei Qin ◽  
Xue Bai ◽  
Shaozhe Lu ◽  
...  

Upconversion (UC) white light hybrid thin films containing Ln3+-tridoped (Yb3+, Er3+ and Tm3+) NaYF4 nanoparticles and poly(vinyl pyrrolidone) (PVP, Mw ≈ 1300 000) were prepared by a spin-coating method and characterized by X-ray diffraction (XRD), field emission scanning electron micrograph (FE-SEM) and Fourier transform infrared spectra (FT-IR). White light was generated by two different lanthanide ions, Er3+ (red and green) and Tm3+ (blue) under excitation by a 980-nm laser diode. Due to the modification of PVP to the UC populating processes, the color stability of the white light in the hybrid films was remarkably improved.



2011 ◽  
Vol 391-392 ◽  
pp. 545-548 ◽  
Author(s):  
Ting Li Cheng ◽  
Min Zheng ◽  
Zuo Shan Wang ◽  
Zhong Li Chen

Zinc ferrite (ZnFe2O4) crystalline was prepared via co-precipitation method, followed by calcinations at various temperatures from 400 to 600 . Poly (vinyl pyrrolidone) (PVP) was used as a stabilizer to prevent the particles from agglomeration. The variation of crystallite size has been investigated using X-ray powder diffraction (XRD), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope(SEM), and a recipe has been developed for the preparation of nano ZnFe2O4with 6.7nm size and complete crystallization.



Sign in / Sign up

Export Citation Format

Share Document