scholarly journals Enhanced Cellulase Production from Bacillus subtilis by Optimizing Physical Parameters for Bioethanol Production

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Deepmoni Deka ◽  
Saprativ P. Das ◽  
Naresh Sahoo ◽  
Debasish Das ◽  
Mohammad Jawed ◽  
...  

Effect of physical parameters such as initial pH, agitation (rpm), and temperature (°C) for cellulase production from Bacillus subtilis AS3 was investigated. Central composite design of experiments followed by multiple desirability function was applied for the optimization of cellulase activity and cell growth. The effect of the temperature and agitation was found to be significant among the three independent variables. The optimum levels of initial pH, temperature, and agitation for alkaline carboxymethylcellulase (CMCase) production predicted by the model were 7.2, 39°C, and 121 rpm, respectively. The CMCase activity with unoptimized physical parameters and previously optimized medium composition was 0.43 U/mL. The maximum activity (0.56 U/mL) and cell growth (2.01 mg/mL) predicted by the model were in consensus with values (0.57 U/mL, 2.1 mg/mL) obtained using optimized medium and optimal values of physical parameters. After optimization, 33% enhancement in CMCase activity (0.57 U/mL) was recorded. On scale-up of cellulase production process in bioreactor with all the optimized conditions, an activity of 0.75 U/mL was achieved. Consequently, the bacterial cellulase employed for bioethanol production expending (5%, w/v) NaOH-pretreated wild grass with Zymomonas mobilis yielded an utmost ethanol titre of 7.56 g/L and 11.65 g/L at shake flask and bioreactor level, respectively.

2018 ◽  
Vol 54 (4A) ◽  
pp. 89
Author(s):  
Hien Thi Nguyen

From five termites guts samples collected in different places in Ha Noi and Vinh, 11 isolates which formed halo on agar plates with CMC were isolated. Among them strain G4 possessed the highest CMCase activity. Based on morphology and 16S rRNA gene sequences analysis, G4 was identified as Bacillus subtilis G4. The results from cultivation study revealed that M3 medium containing rice bran 1 %, soy flour 1 %, casein 1 % and 1 % NaCl  was the best medium for cellulase production of B. subtilis G4. At optimal conditions for G4 which were  inoculums ratio 1 %, cultivation temperature 37ºC, cultivation time 72 hours, shaking speed 150 rpm and initial pH medium 7, CMCase and FPase activity reached 3.36 U/ml and 0.35 U/ml, respectively.


2016 ◽  
Vol 4 (3) ◽  
pp. 397-401
Author(s):  
M.D. BalaKumaran ◽  
R. Santhi

In the present study, chicken feather powder was screened for its application as the substrate for the production of keratinolytic protease by Bacillus subtilis strain PS03. Bacillus subtilis produced a high level of keratinolytic protease using chicken feather powder as substrate. With feather powder as substrate, physical factors such as incubation time, pH and temperature were optimized for increased keratinolytic protease production by Bacillus subtilis. The enzyme production was enhanced when using maltose as carbon source and yeast extract as nitrogen sources. SDS-PAGE analysis indicated the molecular weight of 46 kDa of the partially purified keratinolytic protease. The keratinolytic protease enzyme was stable over a pH range of 6 – 9 and temperature range of 35 - 50°C with maximum activity at pH 9 and 40°C. Based on the results, the use of feather powder as substrate for keratinolytic protease production is cost effective and is easy to scale up. Considering the availability and cost, chicken feather powder is considered as an ideal substrate for keratinolytic protease production in an industrial point of view. Int J Appl Sci Biotechnol, Vol 4(3): 397-401


2021 ◽  
Vol 37 ◽  
pp. e37021
Author(s):  
Roheena Abdullah ◽  
Ammara Akhtar ◽  
Kinza Nisar ◽  
Afshan Kaleem ◽  
Mehwish Iqtedar ◽  
...  

Cellulase has myriad applications in various sectors like pharmaceuticals, textile, detergents, animal feed and bioethanol production, etc. The current study focuses on the isolation, screening and optimization of fungal strain through one factor at a time technique for enhanced cellulase production.  In current study sixteen different fungal cultures were isolated and the culture which quantitatively exhibits higher titers of cellulase activity was identified both morphologically and molecularly by 18S rDNA and designated as Aspergillus niger ABT11. Different parameters like fermentation medium, volume, temperature, pH and nutritional components were optimized. The highest CMCase and FPase activities  was achieved in 100ml of M5 medium in the presence of 1% lactose and sodium nitrate at 30 oC, pH5 after 72 hours. The result revealed A. niger can be a potential candidate for scale up studies.


1970 ◽  
Vol 23 (2) ◽  
pp. 174-176 ◽  
Author(s):  
Meher Nigad Nipa ◽  
Sharmin Sultana ◽  
M Abdul Hakim

Aspergillus humicola, one of the major cellulase-producing fungi, was used in this study for carboxymethylcellulase (CMCase) production using Winstead's basal broth supplanted with cellobiose octaacetate (COA), a synthetic carbon source. Under all conditions, the enzyme biosynthesis was remarkably increased when the inducer COA was added to the production medium containing carboxymethylcellulose (CMC). Maximum enzyme production (1.62 U/ml) was achieved in COA-containing at 37°C. The enzyme production was highest at initial pH 5.5 and after 7 days incubation. The enzyme exhibited maximum activity at 40°C with a reaction pH 5.5. CMCase activity was inhibited by its own substrate CMC at concentration higher than 1.0%. The study clearly demonstrated that COA is a good inducer for extracellular CMCase production by the fungus. Keywords: Aspergillus humicola, Carboxymethylcellulase (CMCase), Carboxymethylcellulose (CMC), Cellobiose octaacetate (COA)DOI: http://dx.doi.org/10.3329/bjm.v23i2.889 Bangladesh J Microbiol, Volume 23, Number 2, December 2006, pp 174-176


2016 ◽  
Vol 70 (3) ◽  
pp. 329-338 ◽  
Author(s):  
Katarina Mihajlovski ◽  
Sladjana Davidovic ◽  
Milica Carevic ◽  
Neda Radovanovic ◽  
Slavica Siler-Marinkovic ◽  
...  

Cellulases are industrially important enzymes with a potential to convert cellulose into fermentable sugars. Novel bacterial isolate Paenibacillus sp. CKS1 was tested for cellulase activity and the optimal conditions for carboxymethyl cellulase (CMCase) production were determined. Maximum CMCase activity was obtained in the third passage of the bacterial culture after 3 days of incubation at 30?C. Cellobiose and yeast extract was the optimal source of carbon and nitrogen for induction of CMCase activity. In addition, with initial pH 7 of the medium and 40 ml of working volume in 500 ml culture flasks with shaking at 150 rpm, the maximum CMCase activity in a crude culture supernatant reached value of 0.532?0.006 U/ml. For crude CMCase, optimal temperature was 50?C and optimal pH 4.8, respectively. HPLC analysis confirmed the bacterium is capable to hydrolise CMC to glucose and other soluble sugars.


2016 ◽  
Vol 27 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Elsa Cherian ◽  
M. Dharmendira Kumar ◽  
G. Baskar

Purpose – The purpose of this paper is to optimize production of cellulase enzyme from agricultural waste by using Aspergillus fumigatus JCF. The study also aims at the production of bioethanol using cellulase and yeast. Design/methodology/approach – Cellulase production was carried out using modified Mandel’s medium. The optimization of the cellulase production was carried out using Plackett-Burman and Response surface methodology. Bioethanol production was carried out using simultaneous saccharification and fermentation. Findings – Maximum cellulase production at optimized conditions was found to be 2.08 IU/ml. Cellulase was used for the saccharification of three different feed stocks, i.e. sugar cane leaves, corn cob and water hyacinth. Highest amount of reducing sugar was released was 29.1 gm/l from sugarcane leaves. Sugarcane leaves produced maximum bioethanol concentration of 9.43 g/l out of the three substrates studied for bioethanol production. Originality/value – The present study reveals that by using the agricultural wastes, cellulase production can be economically increased thereby bioethanol production.


1955 ◽  
Vol 1 (5) ◽  
pp. 299-311 ◽  
Author(s):  
R. Steel ◽  
C. P. Lentz ◽  
S. M. Martin

Factors affecting the production of citric acid in the submerged fermentation of ferrocyanide-treated beet molasses by Aspergillus niger were studied in 2.5 and 36 liter fermenters. The small fermenters were used to determine the effects of changes in sterilization technique, phosphate supplement, ferrocyanide treatment, inoculum level, initial pH, fermentation temperature, and aeration rate. The relation between ferrocyanide concentration and inoculum level was also studied. Four different samples of molasses were fermented successfully. An average yield of 8.2% citric acid (64% conversion) was obtained from 51 small-scale fermentations. Comparable yields were obtained in the large fermenters under comparable conditions. Most of the information obtained with the small fermenters was applicable to the larger-scale fermenters, but in the latter the fermentation was significantly more stable. Aeration was the main problem in the scale-up and aeration rates approximately double those calculated on a fermenter cross-sectional area basis were required for comparable results in the large fermenters.


Microbiology ◽  
2006 ◽  
Vol 152 (3) ◽  
pp. 617-625 ◽  
Author(s):  
Margarita Soriano ◽  
Pilar Diaz ◽  
Francisco I. Javier Pastor

The gene yvpA from Bacillus subtilis was cloned and expressed in Escherichia coli. It encoded a pectate lyase of 221 amino acids that was denominated PelC. The heterologously expressed enzyme was purified by His-tag affinity chromatography and characterized. PelC depolymerized polygalacturonate and pectins of methyl esterification degree from 22 % to 89 %, exhibiting maximum activity on 22 % esterified citrus pectin. It showed an absolute Ca2+ requirement and the optimum temperature and pH were 65 °C and pH 10, respectively. The deduced amino acid sequence of PelC showed 53 % identity to pectate lyase PelA from Paenibacillus barcinonensis, which was also characterized. Similarly to PelC, purified PelA showed activity on polygalacturonate and pectins with a high degree of methyl esterification. The two enzymes cleaved pectic polymers to a mixture of oligogalacturonates, indicating an endo mode of action. Analysis of activity on trigalacturonate showed that PelC cleaved it to galacturonic acid and unsaturated digalacturonate, whereas PelA did not show activity on this substrate. PelC and PelA showed high homology to a few recently identified pectate lyases of family 3 and form with them a cluster of small-sized pectate lyases from non-pathogenic micro-organisms.


2021 ◽  
Vol 13 (2) ◽  
pp. 643-655
Author(s):  
A. Thomas ◽  
M. Laxmi ◽  
A. Benny

With decades of studies on cellulose bioconversion, cellulases have been playing an important role in producing fermentable sugars from lignocellulosic biomass. Copious microorganisms that are able to degrade cellulose have been isolated and identified. The present study has been undertaken to isolate and screen the cellulase producing bacteria from soils of agrowaste field. Cellulase production has been qualitatively analyzed in carboxy methylcellulose (CMC) agar medium after congo red staining and NaCl treatment by interpretation with zones around the potent colonies. Out of the seven isolates, only two showed cellulase production. The morphogical and molecular characterization revealed its identity as Escherichia coli and Staphylococcus aureus. The potential of organisms for bioethanol production has been investigated using two substrates, namely, paper and leaves by subjecting with a pre-treatment process using acid hydrolysis to remove lignin which acts as physical barrier to cellulolytic enzymes. Ethanolic fermentation was done using Saccharomyces cerevisiae for 24-48 h and then the bioethanol produced was qualitatively proved by iodoform assay. These finding proves that ethanol can be made from the agricultural waste and the process is recommended as a means of generating wealth from waste.


2021 ◽  
Vol 66 (1) ◽  
pp. 72-79
Author(s):  
Thuoc Doan Van ◽  
Hung Nguyen Phuc

The effect of physical parameters such as temperature and pH on the production, activity, and stability of α-amylase from Bacillus subtilis V37 was investigated. The results indicated that the optimum culture conditions for enzyme activity were pH 7.0 and 35 oC. The optimum pH and temperature for enzyme activity were 6.0 and 70 oC. The crude enzyme was found to be stable in the pH range of 5.0 to 7.0. The enzyme was stable for 1 h at a temperature from 30 to 80 oC; nearly 100% of enzyme activity remained at temperatures of 30 - 40 oC, and about 34% of original activity remained at a temperature of 80 oC. These features demonstrated that α-amylase from B. subtilis V37 can be applied in many areas such as the food, fermentation, and animal feed industries.


Sign in / Sign up

Export Citation Format

Share Document