scholarly journals THE JOURNEY OF CRISPR-CAS9 FROM BACTERIAL DEFENSE MECHANISM TO A GENE EDITING TOOL IN BOTH ANIMALS AND PLANTS

Author(s):  
T Tahir ◽  
Q Ali ◽  
MS Rashid ◽  
A Malik

Today we can use multiple of endonucleases for genome editing which has become very important and used in number of applications. We use sequence specific molecular scissors out of which, most important are mega nucleases, zinc finger nucleases, TALENS (Transcription Activator Like-Effector Nucleases) and CRISPR-Cas9 which is currently the most famous due to a number of reasons, they are cheap, easy to build, very specific in nature and their success rate in plants and animals is also high. Who knew that one day these CRISPR discovered as a part of immune system of bacteria will be this much worthwhile in the field of genetic engineering? This review interprets the science behind their mechanism and how several advancements were made with the passage of time to make them more efficient for the assigned job.

Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1113 ◽  
Author(s):  
Ilayda Ates ◽  
Tanner Rathbone ◽  
Callie Stuart ◽  
P. Hudson Bridges ◽  
Renee N. Cottle

Impressive therapeutic advances have been possible through the advent of zinc-finger nucleases and transcription activator-like effector nucleases. However, discovery of the more efficient and highly tailorable clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (Cas9) has provided unprecedented gene-editing capabilities for treatment of various inherited and acquired diseases. Despite recent clinical trials, a major barrier for therapeutic gene editing is the absence of safe and effective methods for local and systemic delivery of gene-editing reagents. In this review, we elaborate on the challenges and provide practical considerations for improving gene editing. Specifically, we highlight issues associated with delivery of gene-editing tools into clinically relevant cells.


2020 ◽  
Vol 21 (16) ◽  
pp. 5665 ◽  
Author(s):  
Sunny Ahmar ◽  
Sumbul Saeed ◽  
Muhammad Hafeez Ullah Khan ◽  
Shahid Ullah Khan ◽  
Freddy Mora-Poblete ◽  
...  

Genome editing is a relevant, versatile, and preferred tool for crop improvement, as well as for functional genomics. In this review, we summarize the advances in gene-editing techniques, such as zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 and Cpf1 proteins. These tools support great opportunities for the future development of plant science and rapid remodeling of crops. Furthermore, we discuss the brief history of each tool and provide their comparison and different applications. Among the various genome-editing tools, CRISPR has become the most popular; hence, it is discussed in the greatest detail. CRISPR has helped clarify the genomic structure and its role in plants: For example, the transcriptional control of Cas9 and Cpf1, genetic locus monitoring, the mechanism and control of promoter activity, and the alteration and detection of epigenetic behavior between single-nucleotide polymorphisms (SNPs) investigated based on genetic traits and related genome-wide studies. The present review describes how CRISPR/Cas9 systems can play a valuable role in the characterization of the genomic rearrangement and plant gene functions, as well as the improvement of the important traits of field crops with the greatest precision. In addition, the speed editing strategy of gene-family members was introduced to accelerate the applications of gene-editing systems to crop improvement. For this, the CRISPR technology has a valuable advantage that particularly holds the scientist’s mind, as it allows genome editing in multiple biological systems.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Matthew P. Hirakawa ◽  
Raga Krishnakumar ◽  
Jerilyn A. Timlin ◽  
James P. Carney ◽  
Kimberly S. Butler

Abstract Genome editing technologies, particularly those based on zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspaced short palindromic repeat DNA sequences)/Cas9 are rapidly progressing into clinical trials. Most clinical use of CRISPR to date has focused on ex vivo gene editing of cells followed by their re-introduction back into the patient. The ex vivo editing approach is highly effective for many disease states, including cancers and sickle cell disease, but ideally genome editing would also be applied to diseases which require cell modification in vivo. However, in vivo use of CRISPR technologies can be confounded by problems such as off-target editing, inefficient or off-target delivery, and stimulation of counterproductive immune responses. Current research addressing these issues may provide new opportunities for use of CRISPR in the clinical space. In this review, we examine the current status and scientific basis of clinical trials featuring ZFNs, TALENs, and CRISPR-based genome editing, the known limitations of CRISPR use in humans, and the rapidly developing CRISPR engineering space that should lay the groundwork for further translation to clinical application.


2021 ◽  
Vol 16 (11) ◽  
pp. 155-163
Author(s):  
Alsubki Roua

The global health system is under a constant threat from microbial outbreaks. The innovation in genetic engineering has created an existential threat to national, regional and international security. This threat, that can edit microbial or human genomes, requires global attention. In the current review, a comprehensive literature search was conducted using PubMed, SCOPUS and Google Scholar to identify literature discussing modern biotechnology tools as well as relevance to biosafety in the Middle east region. This review was undertaken to provide an overview of biological threats due to advancements in genetic engineering, making it possible to insert or delete specific genes to increase the virulence of particular microbes. These pathogens or other toxic factors can be multiplied by technology, creating new biological weapons. Genome editing technologies including meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector (TALE)-nucleases (TALENs) and recently discovered clustered regularly interspaced short palindromic repeats (CRISPR/Cas) induce a double strand break at specific DNA target site. Genome editing technologies lead to an irreversible and permanent alteration of the genetic code and therefore, can inevitably result in security risks. Vulnerabilities in Middle Eastern laboratories raise the prospect of high levels of pathogenic microbes potentially creating a weakness in the diagnosis and monitoring of epidemics. Furthermore, the lack of regional legislation to regulate biosafety and biosecurity may lead to biological threat at the regional level.


Author(s):  
Hongyi Li ◽  
Yang Yang ◽  
Weiqi Hong ◽  
Mengyuan Huang ◽  
Min Wu ◽  
...  

AbstractBased on engineered or bacterial nucleases, the development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all eukaryotic cells. Genome editing has extended our ability to elucidate the contribution of genetics to disease by promoting the creation of more accurate cellular and animal models of pathological processes and has begun to show extraordinary potential in a variety of fields, ranging from basic research to applied biotechnology and biomedical research. Recent progress in developing programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)–Cas-associated nucleases, has greatly expedited the progress of gene editing from concept to clinical practice. Here, we review recent advances of the three major genome editing technologies (ZFNs, TALENs, and CRISPR/Cas9) and discuss the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies, focusing on eukaryotic cells and animal models. Finally, we provide an overview of the clinical trials applying genome editing platforms for disease treatment and some of the challenges in the implementation of this technology.


2020 ◽  
Vol 32 (2) ◽  
pp. 40
Author(s):  
Kiho Lee ◽  
Kayla Farrell ◽  
Kyungjun Uh

Traditionally, genetic engineering in the pig was a challenging task. Genetic engineering of somatic cells followed by somatic cell nuclear transfer (SCNT) could produce genetically engineered (GE) pigs carrying site-specific modifications. However, due to difficulties in engineering the genome of somatic cells and developmental defects associated with SCNT, a limited number of GE pig models were reported. Recent developments in genome-editing tools, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9 system, have markedly changed the effort and time required to produce GE pig models. The frequency of genetic engineering in somatic cells is now practical. In addition, SCNT is no longer essential in producing GE pigs carrying site-specific modifications, because direct injection of genome-editing systems into developing embryos introduces targeted modifications. To date, the CRISPR/Cas9 system is the most convenient, cost-effective, timely and commonly used genome-editing technology. Several applicable biomedical and agricultural pig models have been generated using the CRISPR/Cas9 system. Although the efficiency of genetic engineering has been markedly enhanced with the use of genome-editing systems, improvements are still needed to optimally use the emerging technology. Current and future advances in genome-editing strategies will have a monumental effect on pig models used in agriculture and biomedicine.


2020 ◽  
Vol 21 (24) ◽  
pp. 9604
Author(s):  
Edyta Janik ◽  
Marcin Niemcewicz ◽  
Michal Ceremuga ◽  
Lukasz Krzowski ◽  
Joanna Saluk-Bijak ◽  
...  

The discovery of clustered, regularly interspaced short palindromic repeats (CRISPR) and their cooperation with CRISPR-associated (Cas) genes is one of the greatest advances of the century and has marked their application as a powerful genome engineering tool. The CRISPR–Cas system was discovered as a part of the adaptive immune system in bacteria and archaea to defend from plasmids and phages. CRISPR has been found to be an advanced alternative to zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) for gene editing and regulation, as the CRISPR–Cas9 protein remains the same for various gene targets and just a short guide RNA sequence needs to be altered to redirect the site-specific cleavage. Due to its high efficiency and precision, the Cas9 protein derived from the type II CRISPR system has been found to have applications in many fields of science. Although CRISPR–Cas9 allows easy genome editing and has a number of benefits, we should not ignore the important ethical and biosafety issues. Moreover, any tool that has great potential and offers significant capabilities carries a level of risk of being used for non-legal purposes. In this review, we present a brief history and mechanism of the CRISPR–Cas9 system. We also describe on the applications of this technology in gene regulation and genome editing; the treatment of cancer and other diseases; and limitations and concerns of the use of CRISPR–Cas9.


2018 ◽  
Vol 1 (3) ◽  
pp. 29 ◽  
Author(s):  
Lea Nussbaum ◽  
Jelena Telenius ◽  
Stephanie Hill ◽  
Priscila Hirschfeld ◽  
Maria Suciu ◽  
...  

The emergence in recent years of DNA editing technologies—Zinc finger nucleases (ZFNs), transcription activator-like effector (TALE) guided nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/Cas family enzymes, and Base-Editors—have greatly increased our ability to generate hundreds of edited cells carrying an array of alleles, including single-nucleotide substitutions. However, the infrequency of homology-dependent repair (HDR) in generating these substitutions in general requires the screening of large numbers of edited cells to isolate the sequence change of interest. Here we present a high-throughput method for the amplification and barcoding of edited loci in a 96-well plate format. After barcoding, plates are indexed as pools which permits multiplexed sequencing of hundreds of clones simultaneously. This protocol works at high success rate with more than 94% of clones successfully genotyped following analysis.


Author(s):  
Fatih Bilgi ◽  
Zeynep Demirtaş ◽  
Levent Mercan

Genome modifications include potential about providing significant advantages on increasing yield performance and developing resistance to diseases. Gene editing methods that provides silencing or expressing of a gene which is an individual already has, have important potential for improving genetic structure without environmental effects. In recent times, new gene editing systems were developed. These are ZFNs (Zinc Finger Nucleases), TALENs (Transcription Activator-like Effector Nucleases) and CRISPR/Cas nuclease systems. CRISPR/Cas system is a microbial immune system that uses RNA guided nucleases for destroying genetic materials and its potential usage like a simple and efficient gene editing mechanism in animals is being evaluated recently. In this review, we summarized CRISPR/Cas9 system and its usability in animal breeding


Sign in / Sign up

Export Citation Format

Share Document