scholarly journals Effects of basal area on survival and growth of longleaf pine when practicing selection silviculture

2017 ◽  
Vol 26 (1) ◽  
pp. e005 ◽  
Author(s):  
Ferhat Kara ◽  
Edward F. Loewenstein ◽  
Dale G. Brockway

Aim of study: Uneven-aged (UEA) management systems can achieve multiple-use objectives, however, use of UEA techniques to manage longleaf pine (Pinus palustris Mill.) forests are still open to question, because of the species’ intolerance of competition. It was our aim to examine the influence of different levels (9.2, 13.8 and 18.4 m2 ha-1) of residual basal area (RBA) on longleaf pine seedling survival and growth following three growing seasons.Area of study: This study was conducted at the Escambia Experimental Forest, located on the Southern Coastal Plain of Alabama, in the southeastern United States.Material and Methods: Selection silviculture was implemented with the Proportional-Basal Area (Pro-B) method. Prescribed burning was conducted before seed dispersal and in the second year after germination. Photosynthetically active radiation (PAR) was measured under the canopy in the study plots. Survival and growth of longleaf pine seedlings were observed for three growing seasons.Main results: An inverse relationship was found between the number of germinants and RBA, but the mortality of germinants and planted seedlings was not affected by RBA. At age three, an inverse relationship was observed between root-collar diameter (RCD) growth of the germinants and RBA, but RCD growth of planted seedlings was not affected by RBA. Most of the study plots contained more than the projected number of seedlings needed to sustain the target diameter structure.Research highlights: Long-term continuous monitoring of seedling development and recruitment into canopy is required to determine the efficacy of UEA management. However, current data suggest that UEA methods may be a viable alternative to the use of even-aged (EA) methods in longleaf ecosystems.

2000 ◽  
Vol 24 (2) ◽  
pp. 86-92 ◽  
Author(s):  
James D. Haywood ◽  
Harold E. Grelen

Abstract Prescribed burning treatments were applied over a 20 yr period in a completely randomized field study to determine the effects of various fire regimes on vegetation in a direct seeded stand of longleaf pine (Pinus palustris Mill.). Seeding was done in November 1968. The study area was broadcast-burned about 16 months after seeding. The initial research treatments were applied in 1973, and as many as 12 research burns were applied through 1993. Pines were measured in March 1995. Prescribed burning resulted in a greater stocking of longleaf pine (an average of 598 trees/ac) on treated plots than on unburned plots (30 trees/ac). However, on the burned treatments, longleaf pines were significantly smaller (2.5 ft3/tree of stemwood) than were the unburned trees (3.7ft3/tree of stemwood). Half of the treated plots were burned in early March, and the other half were burned in early May. Seasons of burning did not significantly influence longleaf pine stocking. However, use of fire in May resulted in significantly greater basal area (100 ft2/ac) and stemwood production (1,921 ft3/ac) than burning in March (59 ft2/ac and 909 ft3/ac). Fire effectively kept natural loblolly pine (P. taeda L.) seedlings from reaching sapling size, but loblolly saplings and poles dominated the unburned plots (710 trees/ac). When all pines were considered on all treatments, stocking ranged from 467 to 740 trees/ac, but stocking was not significantly different among treatments. The unburned plots had significantly greater total basal area (149 ft2/ac) and stemwood productivity (2,918 ft3/ac) than the burned treatments (82 ft2/ac and 1,459 ft3 /ac). Likewise, hardwoods that were at least 1 in. dbh were more common on unburned p lots (327 stems/ac) than on burned treatments (58 stems/ac). South. J. Appl. For. 24(2):86-92.


1983 ◽  
Vol 7 (1) ◽  
pp. 16-20 ◽  
Author(s):  
Harold E. Grelen

Abstract After seven annual May burns, grass-stage longleaf pine (Pinus palustris Mill.) seedling survival averaged 71 percent, significantly higher than survival on a biennial May burn, an annual or biennial March burn, or an unburned control. Seedling height growth on the annual May burn was no better than that on the biennial May burn, but both May burns significantly exceeded the other treatments in height growth. The annual May burn also provided greatest survival and growth for longleaf seedlings that had begun height growth before the study began.


2001 ◽  
Vol 25 (3) ◽  
pp. 122-130 ◽  
Author(s):  
James D. Haywood ◽  
Finis L. Harris ◽  
Harold E. Grelen ◽  
Henry A. Pearson

Abstract From 1962 through 1998, 20 prescribed burns were applied in a natural stand of longleaf pine (Pinus palustris Mill.) to determine the effects of various fire regimes on the forest plant community. The original longleaf seedlings regenerated from the 1955 seed crop and were growing in a grass-dominated cover when the study began. By 1999, prescribed burning in March and May resulted in a significantly greater stocking of longleaf pine (203 trees/ac) than on the unburned and July burned treatments (72 trees/ac) (α = 0.05). Fire arrested the growth of natural loblolly pine (P. taeda L.) and hardwoods, but loblolly pines and hardwoods of at least 4 in. dbh added 70 ft2/ac of basal area on the unburned plots. Thus, total woody basal area was significantly greater on the unburned (117 ft2/ac) and May burned (132 ft2/ac) treatments than on the July burned treatment (66 ft2/ac); basal area was intermediate on the March burned treatment (97 ft2/ac). Pine volume was 4,315, 2,870, 2,652, and 1,970 ft3 inside-bark/ac on the May burned, March burned, unburned, and July burned treatments, respectively, but these differences were not statistically significant (P = 0.06). There was only 11 lb/ac of herbaceous plants on the unburned plots. Herbaceous plants averaged 993 lb/ac on the three burned treatments, with pinehill bluestem (Schizachyrium scoparium var. divergens [Hack] Gould) being the most common herbaceous plant. We believe the chief influence of burning in this natural longleaf pine forest was not on pine yield but how fires influenced overall stand structure and species composition. South. J. Appl. For. 25(3):122–130.


1987 ◽  
Vol 11 (3) ◽  
pp. 154-157 ◽  
Author(s):  
William D. Boyer

Abstract The influence of understory hardwood control treatments, including periodic prescribed burning, on the growth of longleaf pine (Pinus palustris) was monitored over a 10-yr period. Treatments, established in 14-yr-old sapling stands thinned to 500 trees/ac, included biennial prescribedburns in (1) winter, (2) spring, (3) summer, and (4) an unburned check. Each of these was combined with three supplemental treatments: (1) initial chemical treatment of all hardwood stems, (2) repeated handclearing of all woody stems, and (3) no treatment. All measures of pine growth weresignificantly reduced by the burns. Pine volume growth over the first 7 years on unburned plots exceeded the average on burned plots by 23% (24 ft³/ac/ yr). During the next 3 years, volume growth on unburned plots exceeded the average on burned plots even more—by 33% (44 ft³/ac/yr).Supplemental treatments did not affect pine growth, even though plots without these treatments developed hardwood stands (>l.5-in. dbh) ranging from 4.0 ft³ basal area/ac with summer burns to 11.6 ft² on unburned plots. South. J. Appl. For. 11(3):154-157.


2002 ◽  
Vol 32 (11) ◽  
pp. 1984-1991 ◽  
Author(s):  
Michael A Battaglia ◽  
Pu Mou ◽  
Brian Palik ◽  
Robert J Mitchell

Spatial aggregation of forest structure strongly regulates understory light and its spatial variation in longleaf pine (Pinus palustris Mill.) forest ecosystems. Previous studies have demonstrated that light availability strongly influences longleaf pine seedling growth. In this study, the relationship between spatial structure of a longleaf pine forest and spatial pattern of understory light availability were investigated by comparing three retention harvest treatments: single-tree, small-group, large-group, and an uncut control. The harvests retained similar residual basal area but the spatial patterns of the residual trees differed. Hemispherical photographs were taken at 300 stations to calculate gap light index (GLI), an estimate of understory light availability. Stand-level mean, variation, and spatial distribution of GLI were determined for each treatment. By aggregating residual trees, stand mean GLI increased by 20%, as well as its spatial variation. Spatial autocorrelation of GLI increased as the size of the canopy gaps increased and the gaps were better defined; thus, the predictability of GLI was enhanced. The ranges of detrended semivariograms were increased from the control to the large-group harvest indicating the spatial patterns of understory GLI became coarser textured. Our results demonstrated that aggregated canopy structure of longleaf pine forest will facilitate longleaf pine seedling regeneration.


1980 ◽  
Vol 4 (2) ◽  
pp. 77-79
Author(s):  
Robert C. Sparks ◽  
Norwin E. Linnartz ◽  
Harold E. Harris

Abstract Pruning and thinning a young natural stand of longleaf pine (Pinus palustris Mill.) in southwest Louisiana had little influence on height. However, diameter growth was reduced substantially as pruning intensity or stocking rate increased up to 25-percent live crown and 200 stems per acre, respectively. Improved diameter growth at lower stocking rates was not sufficient to equal the total basal area increment of 200 trees per acre.


2019 ◽  
Vol 49 (1) ◽  
pp. 211-219
Author(s):  
Heather Moylett ◽  
Elsa Youngsteadt ◽  
Clyde Sorenson

Abstract Prescribed burning is a common silvicultural practice used in the management of longleaf pine (Pinus palustris Mill., Pinales: Pinaceae) savannas to reduce hardwood encroachment and ground cover and to maintain biodiversity. We investigated the response of the native bee community (Hymenoptera: Apoidea: Anthophila) in the Sandhills of North Carolina to prescribed burning on a 3-yr rotation over two consecutive years (2012 and 2013). We deployed bee bowl traps in sites that had been burned the year of sampling, 1 yr before, 2 yr before, and in unburned controls. In total, 2,276 bees of 109 species were captured. Bee abundance declined with time since fire, with 2.3 times more bees captured in the most recently burned sites than in unburned controls. Bee diversity also declined with time since fire, with 2.1 times more species captured in the most recently burned sites than in controls. Bee community composition also responded to fire; we present evidence that this response was mediated in part by the effect of fire on the amount of bare ground and canopy cover. Bees nesting aboveground were unaffected by fire, contrary to our expectation that fire would destroy the wood and stems in which these species nest. Our results indicate that prescribed burning is a silvicultural practice consistent with pollinator conservation in longleaf pine ecosystems of the North Carolina sandhills.


1993 ◽  
Vol 17 (1) ◽  
pp. 10-15 ◽  
Author(s):  
William D. Boyer

Abstract Well-stocked mature longleaf pine (Pinus palustris Mill.) stands were cut to five residual basal areas in 1957, namely 9, 18, 27, 36, and 45 ft² per ac, to observe the effect of stand density on seed production and seedling establishment. Seedlings, mainly from the 1955 or 1961seed crops, were established in treated stands. All pines on net 0.9 ac plots were remeasured in 1991 to determine the effect of residual pine density on development of the regeneration. Even the lightest residual overstory converted the structure of 29- to 35- yr-old ingrowth into the reverse-Jdiameter class distribution characteristic of uneven-aged stands. Four or six residual trees, now comprising 7 to 10 ft² basal area (ba)/ac, reduced ingrowth basal area to about half that of same-aged stands released from overstory competition. Merchantable volume of ingrowth under theselow residual densities averaged 40% of that in released stands. Mean annual per ac volume increment of ingrowth averaged 21 to 22 ft³ under the 9 ft² density but did not exceed 7 ft³ under any residual density above this. The potential impact of significant growth reductionsshould be taken into account when considering uneven-aged management methods for longleaf pine. South. J. Appl. For. 17(1):10-15.


2006 ◽  
Vol 36 (11) ◽  
pp. 2724-2736 ◽  
Author(s):  
R J Mitchell ◽  
J K Hiers ◽  
J J O'Brien ◽  
S B Jack ◽  
R T Engstrom

The longleaf pine (Pinus palustris Mill.) forest ecosystems of the US southeastern Coastal Plain, among the most biologically diverse ecosystems in North America, originally covered over 24 × 106 ha but now occupy less than 5% of their original extent. The key factor for sustaining their high levels of diversity is the frequent application of prescribed fire uninterrupted in time and space. Pine fuels, critical to application of fire and regulated by canopy distribution, provide the nexus between silviculture and fire management in this system. Typical silvicultural approaches for this type were, in large part, developed to maximize the establishment and growth of regeneration as well as growth and yield of timber, with much less regard to how those practices might influence the ability to sustain prescribed burning regimes or the associated biodiversity. However, many landholdings in the region now include conservation of biodiversity as a primary objective with sustained timber yield as an important but secondary goal. This review synthesizes the literature related to controls of biodiversity for longleaf pine ecosystems, and silvicultural approaches are compared in their ability to sustain natural disturbance such as fire and how closely they mimic the variation, patterns, and processes of natural disturbance regimes while allowing for regeneration.


Sign in / Sign up

Export Citation Format

Share Document