scholarly journals Influence of Residual Basal Area on Longleaf Pine (<i>Pinus palustris</i> Mill.) First Year Germination and Establishment under Selection Silviculture

2015 ◽  
Vol 05 (01) ◽  
pp. 10-20 ◽  
Author(s):  
Ferhat Kara ◽  
Edward F. Loewenstein
2017 ◽  
Vol 26 (1) ◽  
pp. e005 ◽  
Author(s):  
Ferhat Kara ◽  
Edward F. Loewenstein ◽  
Dale G. Brockway

Aim of study: Uneven-aged (UEA) management systems can achieve multiple-use objectives, however, use of UEA techniques to manage longleaf pine (Pinus palustris Mill.) forests are still open to question, because of the species’ intolerance of competition. It was our aim to examine the influence of different levels (9.2, 13.8 and 18.4 m2 ha-1) of residual basal area (RBA) on longleaf pine seedling survival and growth following three growing seasons.Area of study: This study was conducted at the Escambia Experimental Forest, located on the Southern Coastal Plain of Alabama, in the southeastern United States.Material and Methods: Selection silviculture was implemented with the Proportional-Basal Area (Pro-B) method. Prescribed burning was conducted before seed dispersal and in the second year after germination. Photosynthetically active radiation (PAR) was measured under the canopy in the study plots. Survival and growth of longleaf pine seedlings were observed for three growing seasons.Main results: An inverse relationship was found between the number of germinants and RBA, but the mortality of germinants and planted seedlings was not affected by RBA. At age three, an inverse relationship was observed between root-collar diameter (RCD) growth of the germinants and RBA, but RCD growth of planted seedlings was not affected by RBA. Most of the study plots contained more than the projected number of seedlings needed to sustain the target diameter structure.Research highlights: Long-term continuous monitoring of seedling development and recruitment into canopy is required to determine the efficacy of UEA management. However, current data suggest that UEA methods may be a viable alternative to the use of even-aged (EA) methods in longleaf ecosystems.


2002 ◽  
Vol 32 (11) ◽  
pp. 1984-1991 ◽  
Author(s):  
Michael A Battaglia ◽  
Pu Mou ◽  
Brian Palik ◽  
Robert J Mitchell

Spatial aggregation of forest structure strongly regulates understory light and its spatial variation in longleaf pine (Pinus palustris Mill.) forest ecosystems. Previous studies have demonstrated that light availability strongly influences longleaf pine seedling growth. In this study, the relationship between spatial structure of a longleaf pine forest and spatial pattern of understory light availability were investigated by comparing three retention harvest treatments: single-tree, small-group, large-group, and an uncut control. The harvests retained similar residual basal area but the spatial patterns of the residual trees differed. Hemispherical photographs were taken at 300 stations to calculate gap light index (GLI), an estimate of understory light availability. Stand-level mean, variation, and spatial distribution of GLI were determined for each treatment. By aggregating residual trees, stand mean GLI increased by 20%, as well as its spatial variation. Spatial autocorrelation of GLI increased as the size of the canopy gaps increased and the gaps were better defined; thus, the predictability of GLI was enhanced. The ranges of detrended semivariograms were increased from the control to the large-group harvest indicating the spatial patterns of understory GLI became coarser textured. Our results demonstrated that aggregated canopy structure of longleaf pine forest will facilitate longleaf pine seedling regeneration.


1980 ◽  
Vol 4 (2) ◽  
pp. 77-79
Author(s):  
Robert C. Sparks ◽  
Norwin E. Linnartz ◽  
Harold E. Harris

Abstract Pruning and thinning a young natural stand of longleaf pine (Pinus palustris Mill.) in southwest Louisiana had little influence on height. However, diameter growth was reduced substantially as pruning intensity or stocking rate increased up to 25-percent live crown and 200 stems per acre, respectively. Improved diameter growth at lower stocking rates was not sufficient to equal the total basal area increment of 200 trees per acre.


1993 ◽  
Vol 17 (1) ◽  
pp. 10-15 ◽  
Author(s):  
William D. Boyer

Abstract Well-stocked mature longleaf pine (Pinus palustris Mill.) stands were cut to five residual basal areas in 1957, namely 9, 18, 27, 36, and 45 ft² per ac, to observe the effect of stand density on seed production and seedling establishment. Seedlings, mainly from the 1955 or 1961seed crops, were established in treated stands. All pines on net 0.9 ac plots were remeasured in 1991 to determine the effect of residual pine density on development of the regeneration. Even the lightest residual overstory converted the structure of 29- to 35- yr-old ingrowth into the reverse-Jdiameter class distribution characteristic of uneven-aged stands. Four or six residual trees, now comprising 7 to 10 ft² basal area (ba)/ac, reduced ingrowth basal area to about half that of same-aged stands released from overstory competition. Merchantable volume of ingrowth under theselow residual densities averaged 40% of that in released stands. Mean annual per ac volume increment of ingrowth averaged 21 to 22 ft³ under the 9 ft² density but did not exceed 7 ft³ under any residual density above this. The potential impact of significant growth reductionsshould be taken into account when considering uneven-aged management methods for longleaf pine. South. J. Appl. For. 17(1):10-15.


1985 ◽  
Vol 9 (4) ◽  
pp. 254-259 ◽  
Author(s):  
Clifford E. Lewis ◽  
Warren G. Manson ◽  
Richard J. Bonyata

Abstract Many native forage plants in the South are low quality, poor producers, and unpalatable to cattle. Replacement of these plants with more desirable species would improve the forage resource. One approach is to seed grasses during site preparation when regenerating southern pines. Following site preparation by shearing and strip-disking, Pensacola bahiagrass (Paspalum notatum) was seeded at 15 pounds per acre in the spring and longleaf pine (Pinus palustris) was row-seeded on 12-foot centers in December of the next year. The bahiagrass became established among the residual native plants and was heavily utilized by cattle grazing yearlong. A light application of fertilizer after 3 years tripled bahiagrass yields the first year and doubled it the next year compared to unfertilized plots. Fertilizer improved some nutritional qualities of bahiagrass but digestibility was lowered. Longleaf pine seedlings came out of the grass stage more rapidly and were 50% taller at age 9 with grazing than without it; and in spite of heavier mortality with grazing (36% vs. 21%), stocking was 967 trees per acre at age 11.


2019 ◽  
Vol 11 (15) ◽  
pp. 1803 ◽  
Author(s):  
John Hogland ◽  
Nathaniel Anderson ◽  
David L. R. Affleck ◽  
Joseph St. Peter

This study improved on previous efforts to map longleaf pine (Pinus palustris) over large areas in the southeastern United States of America by developing new methods that integrate forest inventory data, aerial photography and Landsat 8 imagery to model forest characteristics. Spatial, statistical and machine learning algorithms were used to relate United States Forest Service Forest Inventory and Analysis (FIA) field plot data to relatively normalized Landsat 8 imagery based texture. Modeling algorithms employed include softmax neural networks and multiple hurdle models that combine softmax neural network predictions with linear regression models to estimate key forest characteristics across 2.3 million ha in Georgia, USA. Forest metrics include forest type, basal area and stand density. Results show strong relationships between Landsat 8 imagery based texture and field data (map accuracy > 0.80; square root basal area per ha residual standard errors < 1; natural log transformed trees per ha < 1.081). Model estimates depicting spatially explicit, fine resolution raster surfaces of forest characteristics for multiple coniferous and deciduous species across the study area were created and made available to the public in an online raster database. These products can be integrated with existing tabular, vector and raster databases already being used to guide longleaf pine conservation and restoration in the region.


2018 ◽  
Vol 11 (1) ◽  
pp. 1 ◽  
Author(s):  
Brooke McCalip ◽  
Brian P. Oswald ◽  
Kathryn R. Kidd ◽  
Yuhui Weng ◽  
Kenneth W. Farrish

Longleaf pine (Pinus palustris) savannas were once dominant across the southeastern U.S., including East Texas and parts of western and central Louisiana. The diverse understory associated with these historical savannas may occasionally be seen today, but not often in longleaf pine ecosystems. This project aimed to define east Texas site characteristics that are necessary to support these ecosystems with a dense and diverse herbaceous understory with little to no midstory cover. Fifty-nine plots across three study sites were established to evaluate the influence of overstory cover, basal area, aspect, elevation, and slope on the number of plant genera present. Forest structure and site characteristics had significant effects on the number of plant genera found. The number of genera increased with higher elevation and slope; as elevation increased, there was a decline in basal area and overstory cover, leading to a more diverse, understory layer. In order to re-establish and maintain a diverse, herbaceous understory in longleaf pine savannas, sites with more open canopies and on slopes with the most solar exposure should be given priority, particularly when planting desired understory species.


2000 ◽  
Vol 24 (2) ◽  
pp. 86-92 ◽  
Author(s):  
James D. Haywood ◽  
Harold E. Grelen

Abstract Prescribed burning treatments were applied over a 20 yr period in a completely randomized field study to determine the effects of various fire regimes on vegetation in a direct seeded stand of longleaf pine (Pinus palustris Mill.). Seeding was done in November 1968. The study area was broadcast-burned about 16 months after seeding. The initial research treatments were applied in 1973, and as many as 12 research burns were applied through 1993. Pines were measured in March 1995. Prescribed burning resulted in a greater stocking of longleaf pine (an average of 598 trees/ac) on treated plots than on unburned plots (30 trees/ac). However, on the burned treatments, longleaf pines were significantly smaller (2.5 ft3/tree of stemwood) than were the unburned trees (3.7ft3/tree of stemwood). Half of the treated plots were burned in early March, and the other half were burned in early May. Seasons of burning did not significantly influence longleaf pine stocking. However, use of fire in May resulted in significantly greater basal area (100 ft2/ac) and stemwood production (1,921 ft3/ac) than burning in March (59 ft2/ac and 909 ft3/ac). Fire effectively kept natural loblolly pine (P. taeda L.) seedlings from reaching sapling size, but loblolly saplings and poles dominated the unburned plots (710 trees/ac). When all pines were considered on all treatments, stocking ranged from 467 to 740 trees/ac, but stocking was not significantly different among treatments. The unburned plots had significantly greater total basal area (149 ft2/ac) and stemwood productivity (2,918 ft3/ac) than the burned treatments (82 ft2/ac and 1,459 ft3 /ac). Likewise, hardwoods that were at least 1 in. dbh were more common on unburned p lots (327 stems/ac) than on burned treatments (58 stems/ac). South. J. Appl. For. 24(2):86-92.


1979 ◽  
Vol 3 (2) ◽  
pp. 56-59 ◽  
Author(s):  
James L. Buckner ◽  
J. Larry Landers ◽  
James A. Barker ◽  
Carroll J. Perkins

Abstract Frequency of herbaceous wildlife food plants was evaluated on clearcut longleaf pine (Pinus palustris) sites in southwestern Georgia for three years following no treatment, single- or double-chopping, prescribed burning, and combinations of chopping and burning. Legumes (Fabaceae) were reduced following chopping, but increased after prescribed burning. Composites (Asteraceae) were favored by chopping and further increased when burning preceded chopping. Frequency of grasses (Poaceae) on chopped sites was low the first year after treatment but comparable to that on untreated sites by the third year. Species composition of grasses was significantly altered by chopping but not by burning. As a group, herbaceous food plants responded best on chopped plots, especially on those previously burned.


2014 ◽  
Vol 44 (8) ◽  
pp. 977-985 ◽  
Author(s):  
Dale G. Brockway ◽  
Edward F. Loewenstein ◽  
Kenneth W. Outcalt

Proportional basal area (Pro-B) was developed as an accurate, easy-to-use method for making uneven-aged silviculture a practical management option. Following less than 3 h of training, forest staff from a range of professional backgrounds used Pro-B in an operational-scale field study to apply single-tree selection and group selection systems in longleaf pine (Pinus palustris Mill.) stands. Field crews achieved precision levels often within 3%–5% of the 11.5 m2·ha−1 target residual basal area. By aggregating many diameter classes into only three diameter-class groups, Pro-B improves efficiency by requiring tree markers to remember only three fractions, while making a single pass through the stand. Trees of large size, specific species and with good form, broad crowns and cavities can be retained, while adjusting spacing to release residuals. Systematic quantification of marking trees for removal enables different individuals to obtain similar results. Early observations revealed encouraging levels of pine regeneration and stand development, along with continuing good volume growth rates of 3% per year. Although less certain until one or more cutting cycles are completed, these early tests indicate that a stable mature forest structure should develop, which is characterized by the presence of large trees and natural regeneration.


Sign in / Sign up

Export Citation Format

Share Document