scholarly journals Drought responsiveness in two Mexican conifer species forming young stands at high elevations

2021 ◽  
Vol 30 (3) ◽  
pp. e012-e012
Author(s):  
Eduardo D. Vivar-Vivar ◽  

Aim of study: To determine the response of high-altitudinal forests to seasonal drought. Area of study: Monte Tláloc, Estado de México and Rancho Joyas del Durazno, Municipality of Río Verde, San Luis Potosí, México. Materials and methods: In this study, we evaluate the response to drought and hydroclimate in two young Mexican conifers sampled at high elevation, correlating records of tree-ring growth and the Normalized Difference Vegetation Index (NDVI). Main results: The results show that Pinus teocote and Abies religiosa are vulnerable to the precipitation regime and warm conditions of winter-spring. The physiological response mechanisms seem to be differentiated between the species, according to the effects of drought stress. The NDVI demonstrated the different temporal responses of the species according to their inherent physiological mechanisms in response to hydroclimatic limitations. This differentiation can be attributed to the spatial variation present in the particular physical and geographic conditions of each area. The dry and warm seasonal climates reveal P. teocote and A. religiosa to be species that are vulnerable to drought conditions. However, further evaluation of the resistance and resilience of these species is necessary, as well as disentanglement of the effects of associated mechanisms that can influence the predicted processes of extinction or migration. Research highlights: Pinus teocote and Abies religiosa are vulnerable to the seasonal drought conditions. These results are of particular importance given the climatic scenarios predicted for elevated ecotones. Tree-ring widths and NDVI improved the response of radial growth to the climate, enhancing our understanding of forest growth dynamics. The response to climatic variability depends on the particular species.

Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Yulia Ivanova ◽  
Anton Kovalev ◽  
Vlad Soukhovolsky

The paper considers a new approach to modeling the relationship between the increase in woody phytomass in the pine forest and satellite-derived Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) (MODIS/AQUA) data. The developed model combines the phenological and forest growth processes. For the analysis, NDVI and LST (MODIS) satellite data were used together with the measurements of tree-ring widths (TRW). NDVI data contain features of each growing season. The models include parameters of parabolic approximation of NDVI and LST time series transformed using principal component analysis. The study shows that the current rate of TRW is determined by the total values of principal components of the satellite indices over the season and the rate of tree increment in the preceding year.


2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251015
Author(s):  
Guoliang Zhu ◽  
Yitian Li ◽  
Zhaohua Sun ◽  
Shinjiro Kanae

This work explores the changes in vegetation coverage and submergence time of floodplains along the middle and lower reaches of the Yangtze River (i.e., the Jingjiang River) and the relations between them. As the Three Gorges Dam has been operating for more than 10 years, the original vegetative environment has been greatly altered in this region. The two main aspects of these changes were discovered by analyzing year-end image data from remote sensing satellites using a dimidiate pixel model, based on the normalized difference vegetation index, and by calculating water level and topographic data over a distance of 360 km from 2003–2015. Given that the channels had adjusted laterally, thus exhibiting deeper and broader geometries due to the Three Gorges Dam, 11 floodplains were classified into three groups with distinctive features. The evidence shows that, the floodplains with high elevation have formed steady vegetation areas and could hardly be affected by runoff and usually occupied by humans. The low elevation group has not met the minimal threshold of submerging time for vegetation growth, and no plants were observed so far. Based on the facts summed up from the floodplains with variable elevation, days needed to spot vegetation ranges from 70 to 120 days which happened typically near 2006 and between 2008 and 2010, respectively, and a negative correlation was detected between submergence time and vegetation coverage within a certain range. Thus, floods optimized by the Three Gorges Dam have directly influenced plant growth in the floodplains and may also affect our ability to manage certain types of large floods. Our conclusions may provide a basis for establishing flood criteria to manage the floodplain vegetation and evaluating possible increases in resistance caused by high-flow flooding when these floodplains are submerged.


2017 ◽  
Vol 10 (5) ◽  
pp. 1545
Author(s):  
Josiclêda Domiciano Galvíncio

R E S U M OA Caatinga é um biome que sofre com grande variabilidade climática anual e intraanual. Essa variabilidade climática faz com que o bioma em grande parte do ano sofra com grande estresse hídrico. Estudar as relações existentes entre o conteúdo de água na planta e outras variáveis do ecossistemas, tais como: biomassa e evapotranspiração pode auxiliar e prever impactos da escassez hídrica e seca climatológica sobre a produção de biomassa do bioma Caatinga. Assim, este estudo pretende analisar as relações existentes entre o conteúdo de água na folha com a biomassa e evapotranspiração em área do bioma caatinga localizado em São José do Sabugi, Paraiba, Brasil. Foi utilizado o algoritmo SEBAL-Surface Energy Balance para estimar a evapotranspiração e o foram calculados os índices de vegetação NDVI- Normalized Difference Vegetation Index, SAVI- Soil Adjusted Vegetation Index e o índice de conteúdo de água na folha LWCI- Leaf Water Content Index. Os resultados mostraram uma boa relação existente entre os índices de vegetação e o conteúdo de água na folha, sendo r=0.76 para o SAVI e 0.64 para o NDVI. Para a evapotranspiração a correlação foi de r =0.386. Conclui-se que a quantidade de água na folha está altamente correlacionada com a biomassa.Palavra chave: bioma, sazonalidade, seca, semiárido. A B S T R A C TThe Caatinga is a biome that suffers from high annual and intra-annual climatic variability. This climatic variability makes the biome in great part of the year suffer with high great water stress. To study the relationships between water content in the plant and other ecosystem variables, such as: biomass and evapotranspiration can help and predict impacts of water scarcity and climatological drought on the biomass production of the Caatinga biome. Thus, this study intends to analyze the relationship between water content in the leaf with biomass and evapotranspiration in the area of the caatinga biome located in São José do Sabugi, Paraiba, Brazil. The SEBAL-Surface Energy Balance algorithm was used to estimate the evapotranspiration and NDVI-Normalized Difference Vegetation Index, SAVI-Soil Adjusted Vegetation Index and the water content index in the LWCI- Leaf Water Content Index. were calculated. The results showed a good relationship between vegetation index and leaf water content, with r = 0.76 for SAVI and 0.64 for NDVI. For evapotranspiration the correlation was r = 0.386. It is concluded that the amount of water in the leaf is highly correlated with the biomass.Keywords: biome, seasonality, dry, semiarid


2014 ◽  
Vol 53 (12) ◽  
pp. 2790-2804 ◽  
Author(s):  
Seth Mberego ◽  
Juliet Gwenzi

AbstractClimatic variability over southern Africa is a well-recognized phenomenon, yet knowledge about the temporal variability of extreme seasons is lacking. This study investigates the intraseasonal progression of extreme seasons over Zimbabwe using precipitation and normalized difference vegetation index (NDVI) data covering the 1981–2005 period. Results show that the greatest deficits/surpluses of precipitation occur during the middle of the rainfall season (January and February), and the temporal distribution of precipitation during extreme dry seasons seems to shift earlier than that of extreme wet seasons. Furthermore, anomalous wet (dry) conditions were observed prior to the development of extreme dry (wet) seasons. Impacts of precipitation variations on vegetation lag by approximately 1–2 months. The semiarid southern region experiences more variability of vegetation cover than do the northern and eastern regions. Three distinct temporal patterns of dry years were noted by considering the maximum NDVI level, the mid-postseason NDVI condition, and nested dry spells. The findings of this study emphasize that climate extremes ought not to be simply understood in terms of total seasonal precipitation, because they may have within them some nested distribution patterns that may have a strong influence on primary production.


2019 ◽  
Vol 19 (6) ◽  
pp. 1189-1213 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Cesar Azorin-Molina ◽  
Marina Peña-Gallardo ◽  
Miquel Tomas-Burguera ◽  
Fernando Domínguez-Castro ◽  
...  

Abstract. Drought is a major driver of vegetation activity in Spain, with significant impacts on crop yield, forest growth, and the occurrence of forest fires. Nonetheless, the sensitivity of vegetation to drought conditions differs largely amongst vegetation types and climates. We used a high-resolution (1.1 km) spatial dataset of the normalized difference vegetation index (NDVI) for the whole of Spain spanning the period from 1981 to 2015, combined with a dataset of the standardized precipitation evapotranspiration index (SPEI) to assess the sensitivity of vegetation types to drought across Spain. Specifically, this study explores the drought timescales at which vegetation activity shows its highest response to drought severity at different moments of the year. Results demonstrate that – over large areas of Spain – vegetation activity is controlled largely by the interannual variability of drought. More than 90 % of the land areas exhibited statistically significant positive correlations between the NDVI and the SPEI during dry summers (JJA). Nevertheless, there are some considerable spatio-temporal variations, which can be linked to differences in land cover and aridity conditions. In comparison to other climatic regions across Spain, results indicate that vegetation types located in arid regions showed the strongest response to drought. Importantly, this study stresses that the timescale at which drought is assessed is a dominant factor in understanding the different responses of vegetation activity to drought.


2020 ◽  
Vol 12 (15) ◽  
pp. 2433 ◽  
Author(s):  
Iman Rousta ◽  
Haraldur Olafsson ◽  
Md Moniruzzaman ◽  
Hao Zhang ◽  
Yuei-An Liou ◽  
...  

Drought has severe impacts on human society and ecosystems. In this study, we used data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM) sensors to examine the drought effects on vegetation in Afghanistan from 2001 to 2018. The MODIS data included the 16-day 250-m composites of the Normalized Difference Vegetation Index (NDVI) and the Vegetation Condition Index (VCI) with Land Surface Temperature (LST) images with 1 km resolution. The TRMM data were monthly rainfalls with 0.1-degree resolution. The relationship between drought and index-defined vegetation variation was examined by using time series, regression analysis, and anomaly calculation. The results showed that the vegetation coverage for the whole country, reaching the lowest levels of 6.2% and 5.5% were observed in drought years 2001 and 2008, respectively. However, there is a huge inter-regional variation in vegetation coverage in the study period with a significant rising trend in Helmand Watershed with R = 0.66 (p value = 0.05). Based on VCI for the same two years (2001 and 2008), 84% and 72% of the country were subject to drought conditions, respectively. Coherently, TRMM data confirm that 2001 and 2008 were the least rainfall years of 108 and 251 mm, respectively. On the other hand, years 2009 and 2010 were registered with the largest vegetation coverage of 16.3% mainly due to lower annual LST than average LST of 14 degrees and partially due to their slightly higher annual rainfalls of 378 and 425 mm, respectively, than the historical average of 327 mm. Based on the derived VCI, 28% and 21% of the study area experienced drought conditions in 2009 and 2010, respectively. It is also found that correlations are relatively high between NDVI and VCI (r = 0.77, p = 0.0002), but slightly lower between NDVI and precipitation (r = 0.51, p = 0.03). In addition, LST played a key role in influencing the value of NDVI. However, both LST and precipitation must be considered together in order to properly capture the correlation between drought and NDVI.


2020 ◽  
Author(s):  
Nikolaus Obojes ◽  
Jennifer Klemm ◽  
Ruth Sonnenschein ◽  
Francesco Giammarchi ◽  
Giustino Tonon ◽  
...  

<p>To prevent further erosion of pastures along the south slopes of the Vinschgau/Val Venosta (South Tyrol/Italy) about 900 ha of non-native black pine (Pinus nigra) have been afforested there between 1900 and the 1960s. This drought-tolerant Mediterranean species was supposed to be able to cope with the dry climate at degraded soils in the inner-alpine dry valley. Nevertheless, black pine in the Vinschgau has been affected by reoccurring tree vitality decline and diebacks in the last 20 years linked to repeated droughts and heat waves. Observing growth trends via tree ring analysis is usually restricted to single stands. On the other hand, remote sensing data to track tree vitality was not available in sufficient spatial and temporal resolution to be applied to complex mountain terrain until recently. This has changed with the launch of the Sentinel-2 A and B satellites in 2015 and 2017 with a spatial resolution of 10 to 20 m and a revisiting period of 5 days. To analyse the accordance of remote sensing-based vegetation indices to tree-ring based growth data, we compared twelve sites across the Vinschgau/Val Venosta with a differing degree of vitality loss in 2017 for a four-year period from 2015 to 2018. In general, less vital sites were located at lower elevation and on steeper slopes. Radial tree growth was positively correlated to spring precipitation and strongly decreased during earlier hot and dry years such as 1995 and 2003. We found high and statistically significant correlations between site-average basal area increment as well as tree ring width indices and multiple vegetation indices (Normalized Difference Vegetation Index NDVI, Green Normalized Difference Vegetation Index GNDVI, Normalized Difference Infrared Index NDII, Moisture Stress Index MSI) especially for the dry 2017 growing season and the 2018 recovery year, which had large gradients in tree vitality between sites. Overall, these results show that remote sensing-based vegetation indices can be used to scale up stand level growth data also in complex mountain terrain.</p>


2019 ◽  
Vol 49 (5) ◽  
pp. 423-433 ◽  
Author(s):  
E. Bumann ◽  
T. Awada ◽  
B. Wardlow ◽  
M. Hayes ◽  
J. Okalebo ◽  
...  

Remnant populations of Betula papyrifera Marshall have persisted in the Great Plains after the Wisconsin Glaciation along the Niobrara River Valley, Nebraska. Population health has declined in recent years, which has been hypothesized to be due to climate change. We used dendrochronological techniques to assess the response of B. papyrifera to microclimate (1950–2014) and the normalized difference vegetation index (NDVI) derived from satellite imagery (Landsat 5 TM (1985–2011) and MODIS (2000–2014)) as a proxy for population health. Growing-season streamflow and precipitation were positively correlated with raw and standardized tree-ring widths and basal area increment increase. Increasing winter and spring temperatures were unfavorable for tree growth, while increasing summer temperatures were favorable in the absence of drought. The strongest predictor for standardized tree rings was the Palmer Drought Severity Index, suggesting that B. papyrifera is highly responsive to a combination of temperature and water availability. The NDVI from the vegetation community was positively correlated with standardized tree-ring growth, indicating the potential of these techniques to be used as a proxy for ex situ monitoring of B. papyrifera. These results aid in forecasting the dynamics of the species in the face of climate variability and change in both remnant populations and across its current distribution in northern latitudes of North America.


Author(s):  
Marín Pompa-García ◽  
J. Julio Camarero ◽  
Michele Colangelo ◽  
Marcos González-Cásares

AbstractThe inter- and intra-annual variability in radial growth reflects responses to climatic variability and water shortage, especially in areas subjected to seasonal drought. However, it is unknown how this variability is related to forest productivity, which can be assessed by measuring changes in canopy greenness and cover through remote sensing products as the Normalized Difference Vegetation Index (NDVI). We combine xylogenesis with measurements of inter-annual changes in seasonal wood production (earlywood width, adjusted latewood width) and NDVI to improve the understanding of climate and drought impacts on growth and forest productivity in a Pinus teocote stand located in northern Mexico. Cambial dynamics accelerated in March and a high production of radially enlarging and thickening tracheids were observed from April to October and from June to October, respectively. Tracheid maturation was very active in October when latewood production peaked. Wet conditions in winter-spring and summer-autumn enhanced earlywood and latewood production, respectively. Earlywood and latewood were constrained by long (4–10 months) and short (2–3 months) droughts, respectively. The earlywood production depended on April soil moisture, which agrees with the peak of radially enlarging tracheid production found during that month. Aligning drought proxies at inter- and intra-annual scales by using growth and productivity measures improves our understanding of conifer forest responses to water shortage.


Sign in / Sign up

Export Citation Format

Share Document