scholarly journals Nitrogen mineralization of legume residues: interactions between species, temperature and placement in soil

2020 ◽  
Vol 18 (1) ◽  
pp. e1101
Author(s):  
Miguel Oliveira ◽  
Dragan Rebac ◽  
João Coutinho ◽  
Luís Ferreira ◽  
Henrique Trindade

Aim of study: To assess the interactive effects of legume species, residue placement and temperature on the net nitrogen (N) mineralization dynamics in a sandy loam soil.Area of study: Northern PortugalMaterial and methods: Cowpea (Vigna unguiculata L. Walp), faba bean (Vicia faba L.) and pea (Pisum sativum L.) residues were incorporated or applied to the soil surface at typical field yields in Europe and incubated in aerobic conditions for up to 240 days, either at 10ºC or 20ºC. Initial chemical characteristics of the soil and residues were determined. Net N mineralization was estimated at eight time intervals.Main results: Cowpea residues caused no negative changes in soil mineral N contents and were able to release the equivalent of 21-45 kg N ha-1 in 240 days. Net N immobilization (up to 17 kg N ha-1) was observed throughout most of the trial in soil with faba bean and pea residues. Differences in mineralization patterns could be attributed to the higher quality (lower carbon to nitrogen (C:N) ratios) of cowpea. Surface placement increased net N mineralized by as much as 18 kg N ha-1. The sensitivity of N mineralization to changes in temperature and residue placement varied with legume species, likely due to effects associated with differences in C:N ratios.Research highlights: Adding cowpea residues to soil is suitable when high N availability is immediately required. Faba bean or pea residues are better suited for conservation of soil N for later release.

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 444 ◽  
Author(s):  
Chen-Chi Tsai ◽  
Yu-Fang Chang

Adding biochar to excessive compost amendments may affect compost mineralization rate and nitrogen (N) availability. The objective of this 371-day incubation study was to evaluate the effects of four proportions of woody biochar (0%, 0.5%, 1.0%, and 2.0%) from lead tree (Leucaena leucocephala (Lam.) de. Wit) biochar produced at 750 °C through dynamic mineral N and N mineralization rates in three rural soils (one Oxisol and two Inceptisols). In each treatment, 5% poultry–livestock manure compost was added to serve as an excessive application. The results indicated that the biochar decreased available total inorganic nitrogen (TIN) (NO3−-N+NH4+-N) by on average 6%, 9% and 19% for 0.5%, 1.0% and 2.0% treatments, respectively. The soil type strongly influenced the impact of the biochar addition on the soil nitrogen mineralization potential, especially the soil pH and clay content. This study showed that the co-application of biochar and excessive compost benefited the agricultural soils by improving NO3−-N retention in agroecosystems. The application of biochar to these soils to combine it with excessive compost appeared to be an effective method of utilizing these soil amendments, as it diminished the net N mineralization potential and reduced the nitrate loss of the excessive added compost.


1983 ◽  
Vol 13 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Knute J. Nadelhoffer ◽  
John D. Aber ◽  
Jerry M. Melillo

Annual net N mineralization in the 0–10 cm mineral soil zone of nine forest stands on silt–loam soils was measured using a series of insitu soil incubations from April 1980 through April 1981. Differences in soil organic matter (SOM) dynamics among sites were shown with net N mineralization ranging from 0.54 to 2.10 mg N mineralized•g SOM−1•year−1. This variation was not related to percent N in SOM. Net N mineralization varied seasonally with maximum rates in June and very low rates in winter. Nitrification rates were constant from May through September despite fluctuations in soil ammonium pools. Nitrification was greater than 50% of annual net N mineralization at all sites. N uptake by vegetation, as estimated by net N mineralization plus mineral N inputs via precipitation, with minor corrections for mineralization below the incubation depth and for mineral N losses to groundwater, ranged from 40.3 to 119.2 kg N•ha−1•year−1. Annual leaf and needle litter production ranged from 2.12 to 4.17 Mg•ha−1•year−1 and was strongly correlated with N uptake (r = 0.938, P < 0.01). N returned in leaf litter was also correlated with N uptake (r = 0.755, P < 0.05). Important feedbacks may exist between N availability and litter quality and quantity.


2006 ◽  
Vol 36 (5) ◽  
pp. 1236-1242 ◽  
Author(s):  
Kye-Han Lee ◽  
Shibu Jose

We measured soil nitrogen (N) mineralization along an N fertilization gradient (control; irrigation only (I + 0 N); irrigation with 56 (I + 56 N), 112 (I + 112 N), and 224 (I + 224 N) kg N·ha–1·year–1, respectively) in 7-year-old cottonwood (Populus deltoides Marsh.), cherrybark oak (Quercus falcata Michx. var. pagodifolia Ell.), American sycamore (Platanus occidentalis L.), and loblolly pine (Pinus taeda L.) plantations established on a well-drained Redbay sandy loam (a fine loamy, siliceous, thermic Rhodic Paleudult), in Florida, USA. Nitrogen mineralization was measured monthly for 1 year, beginning in April 2001, with the buried bag incubation technique. Irrigation alone or fertigation (irrigation + N) affected annual net N mineralization rates under hardwood species, but no effect was found under loblolly pine. Overall, the rates were higher under cherrybark oak (108 kg N·ha–1·year–1) and cottonwood (101 kg N·ha–1·year–1) than under sycamore (82 kg N·ha–1·year–1) and loblolly pine (75 kg N·ha–1·year–1). Significant correlations were observed between N mineralization and stem volume in all species but loblolly pine. These results suggest that N mineralization response to irrigation or fertigation (irrigation + N) is heavily dependent on species-specific feedback mechanisms. Our results also support the hypothesis that the N mineralization versus productivity relationship is a fundamental feature of forests, resulting from the impact of N availability on productivity and the long-term feedback effects of vegetation on N availability.


2003 ◽  
Vol 33 (10) ◽  
pp. 1880-1891 ◽  
Author(s):  
Amishi B Joshi ◽  
David R Vann ◽  
Arthur H Johnson ◽  
Eric K Miller

We studied broadleaf and needle-leaf forests along an elevation gradient (600–1200 m) at Whiteface Mountain, New York, to determine relationships among temperature, mineral N availability, and aboveground net primary productivity (ANPP) and controls on the latter two variables. We measured net N mineralization during the growing season, annual litterfall quantity and quality, aboveground woody biomass accumulation, and soil organic matter quality. Inorganic N deposition from cloudwater markedly increases mineral N availability above 1000 m in this region. Consequently, mineral N availability across the climosequence remains relatively constant because N mineralization decreases with increasing elevation. Across this climosequence, air temperature (as growing season degree-days) exerted the most control on ANPP. Nitrogen mineralization was most strongly related to soil growing season degree-days and less so to lignin to N ratios in litter. ANPP was correlated with N mineralization but not with mineral N availability. Combining our data with those from similar studies in other boreal and cool temperate forests shows that N mineralization and ANPP are correlated at local, regional, and interbiome scales. Regarding the persistent question concerning cause and effect in the N mineralization – forest productivity relationship, our data provide evidence that at least in this case, forest productivity is a control on N mineralization.


Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 519 ◽  
Author(s):  
J. Sierra ◽  
S. Fontaine ◽  
L. Desfontaines

Laboratory incubations and a field experiment were carried out to determine the factors controlling N mineralization and nitrification, and to estimate the N losses (leaching and volatilization) in a sewage-sludge-amended Oxisol. Aerobically digested sludge was applied at a rate equivalent to 625 kg N/ha. The incubations were conducted as a factorial experiment of temperature (20˚C, 30˚C, and 40˚C) soil water (–30 kPa and –1500 kPa) sludge type [fresh (FS) water content 6230 g/kg; dry (DS) water content 50 g/kg]. The amount of nitrifiers was determined at the beginning and at the end of the experiment. The incubation lasted 24 weeks. The field study was conducted using bare microplots (4 m) and consisted of a factorial experiment of sludge type (FS and DS) sludge placement (subsurface, I+; surface, I–). Ammonia volatilization and the profile (0–0.90 m) of mineral N concentration were measured during 6 and 29 weeks after sludge application, respectively. After 24 weeks of incubation at 40˚C and –30 kPa, net N mineralization represented 52% (FS) and 71% (DS) of the applied N. The difference between sludges was due to an initial period of N immobilization in FS. Nitrification was more sensitive than N mineralization to changes in water potential and it was fully inhibited at –1500 kPa. The introduction of a large amount of nitrifiers with FS did not modify the rate of nitrification, which was principally limited by soil acidity (pH 4.9). Although N mineralization was greatest at 30˚C, nitrification increased continuously with temperature. Nitrogen mineralization from DS was well described by the double-exponential equation. For FS, the equation was modified to take into account an immobilization-remineralization period. Sludge placement significantly affected the soil NO-3/NH+4 ratio in the field: 16 for I+ and 1.5 for I–, after 11 weeks. In the I– treatment, nitrification of the released NH+4 was limited by soil moisture because of the dry soil mulch formed a few hours after rain. At the end of the field experiment, the estimated losses of N by leaching were 432 kg N/ha for I+ and 356 kg N/ha for I–. Volatilization was not detectable in the I+ microplots and it represented only 0.5% of the applied N in the I– microplots. The results showed that placement of sludge may be a valuable tool to decrease NO-3 leaching by placing the sludge under unfavourable conditions for nitrification.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1470
Author(s):  
Inmaculada Bautista ◽  
Luis Lado-Monserrat ◽  
Cristina Lull ◽  
Antonio Lidón

In order to assess the sustainability of silvicultural treatments in semiarid forests, it is necessary to know how they affect the nutrient dynamics in the forest. The objective of this paper is to study the effects of silvicultural treatments on the net N mineralization and the available mineral N content in the soil after 13 years following forest clearings. The treatments were carried out following a randomized block design, with four treatments and two blocks. The distance between the two blocks was less than 3 km; they were located in Chelva (CH) and Tuéjar (TU) in Valencia, Spain. Within each block, four experimental clearing treatments were carried out in 1998: T0 control; and T60, T75 and T100 where 60%, 75% and 100 of basal area was eliminated, respectively. Nitrogen dynamics were measured using the resin tube technique, with disturbed samples due to the high stoniness of the plots. Thirteen years after the experimental clearings, T100, T75 and T60 treatments showed a twofold increase in the net mineralization and nitrification rates with respect to T0 in both blocks (TU and CH). Within the plots, the highest mineralization was found in sites with no plant cover followed by those covered by undergrowth. These results can be explained in terms of the different litterfall qualities, which in turn are the result of the proportion of material originating from Pinus halepensis Mill. vs. more decomposable undergrowth residues.


1992 ◽  
Vol 22 (5) ◽  
pp. 707-712 ◽  
Author(s):  
Xiwei Yin

Published data were analyzed to examine whether nitrogen (N) availability varies along macroclimatic gradients in North America. Extractable N produced during 8-week aerobic laboratory incubation was used as an index of potential net N mineralization. Mean extractable N during the growing season in the forest floor plus top mineral soil was used as an index of the available N pool. Using multiple regression, potential net N mineralization was shown to increase with available N and with litter-fall N (R2 = 0.722). Available N increased with increasing total soil N and with decreasing mean January and July air temperatures (R2 = 0.770). These relationships appeared to hold also for deciduous and coniferous forests separately across regions. Results suggest that net N mineralization output under uniform temperature and moisture conditions can be generally expressed by variations of N input (litter fall) and the available soil N pool, and that the available soil N pool is predictable along a temperature gradient at a regional scale.


2016 ◽  
Vol 13 (18) ◽  
pp. 5395-5403 ◽  
Author(s):  
Maya Almaraz ◽  
Stephen Porder

Abstract. There are many proxies used to measure nitrogen (N) availability in watersheds, but the degree to which they do (or do not) correlate within a watershed has not been systematically addressed. We surveyed the literature for intact forest or grassland watersheds globally, in which several metrics of nitrogen availability have been measured. Our metrics included the following: foliar δ15N, soil δ15N, net nitrification, net N mineralization, and the ratio of dissolved inorganic to organic nitrogen (DIN : DON) in soil solution and streams. We were particularly interested in whether terrestrial and stream based proxies for N availability were correlated where they were measured in the same place. Not surprisingly, the strongest correlation (Kendall's τ) was between net nitrification and N mineralization (τ  =  0.71, p < 0.0001). Net nitrification and N mineralization were each correlated with foliar and soil δ15N (p < 0.05). Foliar and soil δ15N were more tightly correlated in tropical sites (τ  =  0.68, p < 0.0001), than in temperate sites (τ  =  0.23, p  =  0.02). The only significant correlations between terrestrial- and water-based metrics were those of net nitrification (τ  =  0.48, p  =  0.01) and N mineralization (τ  =  0.69, p  =  0.0001) with stream DIN : DON. The relationship between stream DIN : DON with both net nitrification and N mineralization was significant only in temperate, but not tropical regions. To our surprise, we did not find a significant correlation between soil δ15N and stream DIN : DON, despite the fact that both have been used to infer spatially or temporally integrated N status. Given that both soil δ15N and stream DIN : DON are used to infer long-term N status, their lack of correlation in watersheds merits further investigation.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Rodrick D. Lentz ◽  
Gary A. Lehrsch

The use of solid dairy manure for sugarbeet production is problematic because beet yield and quality are sensitive to deficiencies or excesses in soil N, and soil N availability from manure varies substantially depending on the year of application. Experimental treatments included combinations of two manure rates (0.33 and 0.97 Mg total N ha−1) and three application times, and non-manure treatments (control and urea fertilizer). We measured soil net N mineralization and biomass, N uptake, and yields for sprinkler-irrigated sugarbeet. On average, the 1-year-old, low-rate manure, and 1- and 2-year-old, high-rate manure treatments produced 1.2-fold greater yields, 1.1-fold greater estimated recoverable sugar, and 1.5-fold greater gross margins than that of fertilizer alone. As a group the 1-year-old, low-rate manure, and 2- and 3-year-old, high-rate-manure treatments produced similar cumulative net N mineralization as urea fertilizer; whereas the 1-year-old, high-rate manure treatment provided nearly 1.5-fold more N than either group. With appropriate manure application rates and attention to residual N and timing of sugarbeet planting, growers can best exploit the N mineralized from manure, while simultaneously maximizing sugar yields and profits.


1994 ◽  
Vol 24 (8) ◽  
pp. 1636-1645 ◽  
Author(s):  
Charles T. Garten Jr. ◽  
Helga Van Miegroet

We tested the hypothesis that naturally occurring nitrogen (N) isotope ratios in foliage (from plants that do not symbiotically fix atmospheric N2) are an indicator of soil N dynamics in forests. Replicate plots were established at eight locations ranging in elevation from 615 to 1670 m in Great Smoky Mountains National Park in eastern Tennessee, U.S.A. The locations selected ranged from N-poor (low-elevation) to N-rich (high-elevation) forest stands. Soils were sampled in June 1992; plants, forest floors, and upper mineral soils were sampled in August 1992. Net N mineralization and net nitrification potentials for surface mineral soils and organic matter layers at each site were determined by aerobic laboratory incubations. Soils and organic layers from high-elevation sites had greater net N mineralization and nitrification potentials than soils from low-elevation sites. There were significant (P ≤ 0.05) differences between study sites in soil 15N abundance. Therefore, we examined correlations between measures of soil N availability and both mean foliar δ15N values and mean enrichment factors (εp−s = δ15Nleaf − δ15Nsoil). In evergreens, maples, and ferns, mean foliar δ15N values and mean enrichment factors were positively correlated with net N mineralization and net nitrification potentials in soil. The observed relationships between natural 15N abundance in plant leaves and soil N availability were explained by a simple model of soil N dynamics. The model predicts how the isotopic composition of plant N is affected by the following factors: (i) varying uptake of soil NH4-N and NO3-N, (ii) the isotopic composition of different soil N pools, and (iii) relative rates of soil N transformations.


Sign in / Sign up

Export Citation Format

Share Document