scholarly journals Spatial and temporal characteristics of evaporation trends over India during 1971-2000

MAUSAM ◽  
2021 ◽  
Vol 59 (2) ◽  
pp. 149-158
Author(s):  
A. K. JASWAL ◽  
G. S. PRAKASA RAO ◽  
U. S. DE

Evaporation and rainfall data for the period 1971-2000 for 58 well distributed stations over India were selected for this study. Trends of these two parameters for the country as a whole and for individual stations for annual (January – December), winter (December, January and February), summer (March – May), monsoon (June – September) and post-monsoon (October, November) period were analysed and tested for significance at 95% level of confidence. The analysis shows that for the country as a whole, the evaporation has significantly decreased in all seasons while there is no significant trend in rainfall. Out of 58 stations, numbers of stations having significant decrease in evaporation are 45 (annual), 30 (winter), 42 (summer) and 35 (monsoon and post monsoon seasons). Decadal analysis of trends shows that the variability of evaporation towards the decreasing trend is steadily maintained throughout the period but more in the decade 1991-2000. Spatial analysis of the seasonal trends of evaporation indicates the decreasing trends over all parts of India except northeast where it is increasing. Regions of significant decrease in evaporation viz., North, Southwest and Southeast and increase in evaporation viz., Northeast emerge from the spatial analysis of trends over the country. Spatial analysis of seasonal rainfall trends indicates the increasing trends in southern parts and decreasing trends in central and northeastern parts of the country. Evaporation trends of nearly 50% stations (mostly in southern parts of India) show complimentary relation with rainfall of the same period. Rest of the long term trends in evaporation may be due to the variation in other parameters like wind speed, cloud cover, sunshine duration etc. which needs further examination.

2011 ◽  
Vol 24 (7) ◽  
pp. 1913-1921 ◽  
Author(s):  
Mateus da Silva Teixeira ◽  
Prakki Satyamurty

Abstract A new approach to define heavy and extreme rainfall events based on cluster analysis and area-average rainfall series is presented. The annual frequency of the heavy and extreme rainfall events is obtained for the southeastern and southern Brazil regions. In the 1960–2004 period, 510 (98) and 466 (77) heavy (extreme) rainfall events are identified in the two regions. Monthly distributions of the events closely follow the monthly climatological rainfall in the two regions. In both regions, annual heavy and extreme rainfall event frequencies present increasing trends in the 45-yr period. However, only in southern Brazil is the trend statistically significant. Although longer time series are necessary to ensure the existence of long-term trends, the positive trends are somewhat alarming since they indicate that climate changes, in terms of rainfall regimes, are possibly under way in Brazil.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1498 ◽  
Author(s):  
Solomon Mulugeta ◽  
Clifford Fedler ◽  
Mekonen Ayana

With climate change prevailing around the world, understanding the changes in long-term annual and seasonal rainfall at local scales is very important in planning for required adaptation measures. This is especially true for areas such as the Awash River basin where there is very high dependence on rain- fed agriculture characterized by frequent droughts and subsequent famines. The aim of the study is to analyze long-term trends of annual and seasonal rainfall in the Awash River Basin, Ethiopia. Monthly rainfall data extracted from Climatic Research Unit (CRU 4.01) dataset for 54 grid points representing the entire basin were aggregated to find the respective areal annual and seasonal rainfall time series for the entire basin and its seven sub-basins. The Mann-Kendall (MK) test and Sen Slope estimator were applied to the time series for detecting the trends and for estimating the rate of change, respectively. The Statistical software package R version 3.5.2 was used for data extraction, data analyses, and plotting. Geographic information system (GIS) package was also used for grid making, site selection, and mapping. The results showed that no significant trend (at α = 0.05) was identified in annual rainfall in all sub-basins and over the entire basin in the period (1902 to 2016). However, the results for seasonal rainfall are mixed across the study areas. The summer rainfall (June through September) showed significant decreasing trend (at α ≤ 0.1) over five of the seven sub-basins at a rate varying from 4 to 7.4 mm per decade but it showed no trend over the two sub-basins. The autumn rainfall (October through January) showed no significant trends over four of the seven sub-basins but showed increasing trends over three sub-basins at a rate varying from 2 to 5 mm per decade. The winter rainfall (February through May) showed no significant trends over four sub-basins but showed significant increasing trends (at α ≤ 0.1) over three sub-basins at a rate varying from 0.6 to 2.7 mm per decade. At the basin level, the summer rainfall showed a significant decreasing trend (at α = 0.05) while the autumn and winter rainfall showed no significant trends. In addition, shift in some amount of summer rainfall to winter and autumn season was noticed. It is evident that climate change has shown pronounced effects on the trends and patterns of seasonal rainfall. Thus, the study contribute to better understanding of climate change in the basin and the information from the study can be used in planning for adaptation measures against a changing climate.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1080
Author(s):  
Stephanie Hänsel

This study spanning the period 1851–2015 explores the spatial and temporal characteristics of dry and wet periods in Europe as well as their variability and changes. It is based on up to 220 stations with monthly precipitation time series that have a varying data availability within the study period. The stations are classified into eight regions with similar climate characteristics. Dry and wet periods are analyzed using the decile method as well as the modified Rainfall Anomaly Index mRAI at the 3-month timescale. Spatial extent, duration, and frequency of dry and wet periods show a large multi-decadal variability resulting in comparatively small long-term trends over the entirety of Europe for the study periods 1901–2015 and 1951–2015. Nonetheless, several sub-regions show distinct changes—with opposite signals for northern and southern Europe. Spatial extent and duration of dry periods generally decreased, while wet periods show increases throughout the 20th century—particularly in Scandinavia. A simultaneous increase in the frequency of severely dry and wet years, respectively, is observed since the 1980s. This indicates that temperature increases across Europe may be connected with an increasing frequency of extremes at both sides of the probability density function of precipitation.


2018 ◽  
Author(s):  
Tao Xian ◽  
Cameron R. Homeyer

Abstract. Accurate depictions of the tropopause and its changes are important for studies such as stratosphere-troposphere exchange and climate change.Here, the fidelity of primary lapse-rate tropopause altitudes and double tropopause frequencies in four modern reanalyses (ERA-Interim, JRA-55, MERRA-2, and CFSR) is examined using global radiosonde observations. In addition, long-term trends (1981–2015) in these tropopause properties are diagnosed in both the reanalyses and radiosondes. It is found that ERA-Interim, JRA-55, and CFSR reproduce observed tropopause altitudes with little bias and error comparable to the model vertical resolution, while MERRA-2 tropopause altitudes are biased 500–600 m high. All reanalyses underestimate the double tropopause frequency (up to 30 % lower than observed), with the largest biases found in JRA-55 and the smallest in CFSR. The underestimates in double tropopause frequency are primarily attributed to the coarse vertical resolution of the reanalyses. Significant increasing trends in both tropopause altitude (40–120 m per decade) and double tropopause frequency (≥ 3 % per decade) were found in both the radiosonde observations and reanalyses over the 35-year analysis period. ERA-Interim, JRA-55, and MERRA-2 broadly reproduce the patterns and signs of observed significant trends, while CFSR is inconsistent with the remaining datasets. These trends were diagnosed in both the native Eulerian coordinate system of the reanalyses and in a relative latitude coordinate system where the tropopause break (the discontinuity in tropopause altitude between the tropics and extratropics) was used as the reference latitude in each hemisphere. The tropopause break-relative coordinate facilitates the evaluation of tropopause behavior within the tropical and extratropical reservoirs and revealed significant differences in trend estimates compared to the traditional Eulerian analysis. Notably, increasing tropopause altitude trends were found to be of greater magnitude in tropopause break-relative coordinates and increasing double tropopause frequency trends were found to occur primarily poleward of the tropopause break in each hemisphere.


2013 ◽  
Vol 31 (5) ◽  
pp. 795-804 ◽  
Author(s):  
X. Xia

Abstract. This study aims to investigate the effect of total cloud cover (TCC) and sunshine duration (SSD) in the variation of diurnal temperature range (DTR) in China during 1954–2009. As expected, the inter-annual variation of DTR was mainly determined by TCC. Analysis of trends of 30-year moving windows of DTR and TCC time series showed that TCC changes could account for that of DTR in some cases. However, TCC decreased during 1954–2009, which did not support DTR reduction across China. DTRs under sky conditions such as clear, cloudy and overcast showed nearly the same decreasing rate that completely accounted for the overall DTR reduction. Nevertheless, correlation between SSD and DTR was weak and not significant under clear sky conditions in which aerosol direct radiative effect should be dominant. Furthermore, 30–60% of DTR reduction was associated with DTR decrease under overcast conditions in south China. This implies that aerosol direct radiative effect appears not to be one of the main factors determining long-term changes in DTR in China.


2005 ◽  
Vol 23 (7) ◽  
pp. 2425-2432 ◽  
Author(s):  
F. Liang ◽  
X. A. Xia

Abstract. Long-term trends in downwelling solar irradiance and associated climatic factors over China are studied in the paper. Decreasing trends in global and direct radiation are observed over much of China. The largest decrease occurs in South and East China (east of about 100° E and south of about 40° N). The spatial pattern of observed trends in diffuse irradiance is complex and inhomogeneous. An intriguing aspect of trends in global and direct irradiance is the rather abrupt decrease in annual and seasonal mean values from 1978 onward. The decreasing trends in solar radiation in China did not persist into the 1990s. The spatial and temporal patterns of trends in sunshine duration are consistent with that of global and direct irradiance. A decreasing trend in rainy days is observed over much of China, which is in agreement with the secular trend in cloud amount. The fact that trends in cloud amount and solar radiation are quite similar suggests that the cloud amount is not the primary cause for the decrease in solar radiation. Visibility in the eastern part of China has deteriorated heavily as a result of the rapid increase in aerosol loading. The statistical analysis showed that atmospheric transmission under clear conditions decreased rapidly. These facts suggest that the rapid increase in aerosol loading should be one of the principle causes for the decrease in solar radiation. The observed diurnal temperature range decreases remarkably in China, which is closely related to the increase in aerosols. The effects of anthropogenic air pollutants on climate should be further studied and included in the simulation of climate and projection of climate scenario. Keywords. Atmospheric composition and structure (Aerosol and particles; General or miscellaneous) – Meteorology and atmospheric dynamics (Radiative processes)


2007 ◽  
Vol 7 (1) ◽  
pp. 93-126 ◽  
Author(s):  
K. Eleftheratos ◽  
C. S. Zerefos ◽  
P. Zanis ◽  
D. S. Balis ◽  
G. Tselioudis ◽  
...  

Abstract. The seasonal variability and the interannual variance explained by ENSO and NAO to cirrus cloud cover (CCC) are examined during the twenty-year period 1984–2004. CCC was found to be significantly correlated with vertical velocities and relative humidity from ECMWF/ERA40 in the tropics (correlations up to –0.7 and +0.7 at some locations, respectively) suggesting that variations in large-scale vertical winds and relative humidity fields can be the origin of up to half of the local variability in CCC over these regions. These correlations reflect mostly the seasonal cycle. Although the annual cycle is dominant in all latitudes and longitudes, peaking over the tropics and subtropics, its amplitude can be exceeded during strong El Nino/La Nina events. Over the eastern tropical Pacific Ocean the interannual variance of CCC which can be explained by ENSO is about 6.8% and it is ~2.3 times larger than the amplitude of the annual cycle. Natural long-term trends in the tropics are generally small (about –0.3% cloud cover per decade) and possible manmade trends in those regions are also small. The contributions of NAO and QBO to the variance of CCC in the tropics are also small. In the northern mid–latitudes, on the other hand, the effect of NAO is more significant and can be very important regionally. Over northern Europe and the eastern part of the North Atlantic Flight Corridor (NAFC) there is a small positive correlation between CCC and NAO index during the wintertime of about 0.3. In this region, the interannual variance of CCC explained by NAO is 2.6% and the amplitude of the annual cycle is 3.1%. Long-term trends over this region are about +1.6% cloud cover per decade and compare well with the observed manmade trends over congested air traffic regions in Europe and the North Atlantic as have been evidenced from earlier findings.


2018 ◽  
Vol 10 (9) ◽  
pp. 3330 ◽  
Author(s):  
Iván Hernández-Paniagua ◽  
Rodrigo Lopez-Farias ◽  
José Piña-Mondragón ◽  
Juan Pichardo-Corpus ◽  
Olivia Delgadillo-Ruiz ◽  
...  

Here, we present an assessment of long-term trends in the O3 weekend effect (WE) occurrences and spread within the Mexico City (MCMA), Guadalajara (GMA), and Monterrey (MMA) metropolitan areas, which are the three largest metropolitan areas (MAs) of Mexico and concentrate around 33% of the total population in the country. Daytime averages and peak differences in O3 concentrations from weekdays to weekends were used as a proxy of WE occurrence. All MAs exhibited the occurrence of WE in all years at least in one monitoring site. Substantial differences in O3 daytime averages and peaks from weekdays to weekends have decreased over time in all MAs, and since 1998 and 2013 for the MCMA and GMA, respectively, higher O3 levels during weekends are typical during most of the year. The largest variations in the O3 WE were observed at downwind and urban core sites of the MCMA and GMA. Significant increasing trends (p < 0.05) in the O3 WE magnitude were observed for Sundays at all sites within the MCMA, with trends in annual averages ranging between 0.33 and 1.29 ppb O3 yr−1. Within the GMA, for Sundays, fewer sites exhibited increasing trends in the WE occurrence and at lower growth rates (0.32 and 0.48 ppb yr−1, p < 0.1) than within the MCMA, while within the MMA no apparent trends were observed in marked contrast with the MCMA and GMA. Our findings suggest that policies implemented have been successful in controlling weekday ground-level O3 within the MCMA and GMA, but further actions must be introduced to control the increases in the O3 WE magnitude and spread.


2007 ◽  
Vol 7 (10) ◽  
pp. 2631-2642 ◽  
Author(s):  
K. Eleftheratos ◽  
C. S. Zerefos ◽  
P. Zanis ◽  
D. S. Balis ◽  
G. Tselioudis ◽  
...  

Abstract. The seasonal variability and the interannual variance explained by ENSO and NAO to cirrus cloud cover (CCC) are examined during the twenty-year period 1984–2004. CCC was found to be significantly correlated with vertical velocities and relative humidity from ECMWF/ERA40 in the tropics (correlations up to −0.7 and +0.7 at some locations, respectively) suggesting that variations in large-scale vertical winds and relative humidity fields can be the origin of up to half of the local variability in CCC over these regions. These correlations reflect mostly the seasonal cycle. Although the annual cycle is dominant in all latitudes and longitudes, peaking over the tropics and subtropics, its amplitude can be exceeded during strong El Nino/La Nina events. Over the eastern tropical Pacific Ocean the interannual variance of CCC which can be explained by ENSO is about 6.8% and it is ~2.3 times larger than the amplitude of the annual cycle. Natural long-term trends in the tropics are generally small (about −0.3% cloud cover per decade) and possible manmade trends in those regions are also small. The contributions of NAO and QBO to the variance of CCC in the tropics are also small. In the northern mid-latitudes, on the other hand, the effect of NAO is more significant and can be very important regionally. Over northern Europe and the eastern part of the North Atlantic Flight Corridor (NAFC) there is a small positive correlation between CCC and NAO index during the wintertime of about 0.3. In this region, the interannual variance of CCC explained by NAO is 2.6% and the amplitude of the annual cycle is 3.1%. Long-term trends over this region are about +1.6% cloud cover per decade and compare well with the observed manmade trends over congested air traffic regions in Europe and the North Atlantic as have been evidenced from earlier findings.


Sign in / Sign up

Export Citation Format

Share Document