scholarly journals Thermoregulatory, behavioral, and production traits of ½ and ¾ Holstein/Gir dairy cows

2019 ◽  
Vol 40 (4) ◽  
pp. 1595
Author(s):  
Diogo Alves da Costa Ferro ◽  
Rafael Alves da Costa Ferro ◽  
Aracele Pinheiro Pales dos Santos ◽  
Klayto José Gonçalves dos Santos ◽  
Bruna Paula Alves da Silva ◽  
...  

The aim of this study was to evaluate thermoregulatory, behavioral, and production traits of Holstein/Gir dairy cows of different genetic compositions. The experiment was carried out in the municipality of Turvânia - GO, Brazil, from July to December 2017. Twenty lactating cows of two genetic groups (½ and ¾ Holstein/Gir [HG]) were used in a completely randomized design where they were subjected to a rotational-grazing system in 24 irrigated Mombasa grass pastures with one day of occupation and 24 days of rest, and fed a 22% CP supplemental concentrate diet. During the experimental period, thermoregulatory, behavioral, and production data were collected on 12 occasions, at 15-day intervals. Environmental data such as ambient temperature, air relative humidity, and temperature-humidity index were recorded. Number of hairs, hair length and thickness, body surface temperature, rectal temperature, and respiratory frequency were analyzed as thermoregulatory traits. The behavioral assessment was undertaken by observing the feeding behavior, rumination, rest, and other activities. To determine production traits, milk yield and composition were analyzed. A higher respiratory frequency was observed in ¾ HG cows compared with ½ HG cows (p<0.05). Cows of the ½ HG group produced milk with higher protein contents (p<0.05). Rectal temperature, body temperature, number of hairs, hair length and thickness, feeding behavior, rumination, rest, and other activities were similar (p>0.05) between the two genetic groups, and the same was true for milk yield, fat and lactose contents, and somatic cell count.

2017 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
W. P. Santos ◽  
C. L. S. Ávila ◽  
M. N. Pereira ◽  
R. F. Schwan ◽  
N. M. Lopes ◽  
...  

2003 ◽  
Vol 76 (3) ◽  
pp. 439-454 ◽  
Author(s):  
H. J. Sayers ◽  
C. S. Mayne ◽  
C. G. Bartram

AbstractA study was undertaken to examine the effect of level and type of supplement and changes in the chemical composition of herbage through the grazing season on herbage intake, animal performance and rumen characteristics with high-yielding dairy cows. Thirty-two high genetic merit dairy cows were allocated to one of four treatments in a two-phase change-over design experiment. The four treatments involved offering either high-fibre (HF) or high-starch (HS) supplements at either 5 or 10 kg dry matter (DM) per day. Animals rotationally grazed perennial ryegrass swards offered a daily herbage allowance of 23 kg DM. High levels of animal performance were maintained throughout the study with mean milk yields over the 21-week experimental period of 35·5 and 37·2 kg per cow per day on the 5- and 10-kg treatments respectively. Supplement type had no significant effect on herbage intake. Increasing the level of supplementation reduced herbage intake by 0·49 and 0·46 kg herbage DM per kg supplement DM and increased milk yield, with a milk yield response of 0·55 and 0·65 kg/kg supplement DM offered in phases 1 and 2. Supplement type had no significant effect on milk yield and milk butterfat content. However, in both phases 1 and 2, milk protein content was significantly higher with cows offered the HS supplement compared with the HF supplement, this being particularly evident at the higher level of supplementation. Supplement type also had marked effects on milk protein composition. These results indicate that high levels of performance can be achieved with dairy cows on grazed pasture with moderate levels of supplementation.


Author(s):  
Rajalaxmi Behera ◽  
Ajoy Mandal ◽  
Saroj Rai ◽  
M. Karunakaran ◽  
Mohan Mondal ◽  
...  

Background: Genotype environment interaction plays vital role in animal productivity. Heat stress is one of the major environmental stressor affecting milk production and measured in terms of temperature humidity index (THI). Indian milk industry largely depends on crossbred cows bearing different degree of exotic inheritance. Thus, the role of genotype (genetic group) of the crossbred cows and environment (THI) interaction plays vital role in Indian climate which is mostly tropical in nature. Therefore, study was undertaken to examine the existence of genetic group × THI in crossbred dairy cows reared at institute herd of ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal. Methods: A total of 12364 records each of monthly milk yield (MMY) and average daily milk yield in a month (AMY) of crossbred cows spanned over twenty two years (1994-2015) and weather parameters(temperature and relative humidity) for the corresponding years were collected from institute records. The data were classified into 8 genetic groups according to the genetic composition and 3 THI groups (THI less than 72, THI 72-78 and THI above 78). The interaction model was used to study the G×E interaction study using least squares analysis. Result: Effect of non-genetic factors (parity, period of calving and stage of lactation) was found to be highly significant (P less than 0.01) and genetic group × THI was significant (P less than 0.05) of on both MMY and AMY. Genetic group bearing 50% Jersey and 50% Red Sindhi or Tharparkar were the most heat tolerant breeds. Jersey crossbred cows were more heat tolerant than Holstein crossbred cows. Crossbred cows with 50% Jersey inheritance performed better than higher Jersey inheritance during periods of THI above 72.


2020 ◽  
Vol 87 (3) ◽  
pp. 334-340
Author(s):  
Elisa Manzocchi ◽  
Werner Hengartner ◽  
Michael Kreuzer ◽  
Katrin Giller

AbstractThis research paper addresses the hypotheses (1) that milk produced from hay-fed cows differs from that of silage-fed cows and (2) that silage type has an important impact, too. Four diets differing in forage type but with equal estimated milk production potential and a forage:concentrate ratio of 0.85 : 0.15 were compared regarding their effect on feed intake, milk yield and milk properties. The forages tested were hay, grass silage, conventional short-chopped and long-chopped maize silage subjected to a novel processing technology (Shredlage®). Twenty-four dairy cows were fed two of the four diets in two consecutive runs in an incomplete (4 × 2) Latin-square design (n = 12 per diet). Each experimental period lasted 22 d, with 12 d of adaptation and 10 d of sampling. During sampling, feed intake and milk yield were recorded daily, milk composition and coagulation properties were determined four times. The composition of the diet ingredients was analysed weekly. Data were analysed with a mixed model considering feed, period and their interaction as fixed effects. Stage of lactation, milk yield and milk composition from the pre-experimental period were used as covariates in the model. Dry matter intake was lower with the long-chopped processed maize silage compared to the other three groups. There were some diet differences in intakes of net energy for lactation and absorbable protein in the duodenum, but this did not result in changes in milk yield. The milk fat content was higher with the grassland-based diets compared to the maize silage diets. No treatment effect on milk acidity and rennet coagulation properties was observed. In conclusion, there were no indications for specific physico-chemical properties of milk from a hay-based diet, and maize processing technology was not of large effect either. Future investigations should focus on sensory differentiation of the milk produced with different forages.


2019 ◽  
Vol 86 (1) ◽  
pp. 19-24
Author(s):  
Hossein Naeemipour Younesi ◽  
Mohammad Mahdi Shariati ◽  
Saeed Zerehdaran ◽  
Mehdi Jabbari Nooghabi ◽  
Peter Løvendahl

AbstractThe main objective of this study was to compare the performance of different ‘nonlinear quantile regression’ models evaluated at theτth quantile (0·25, 0·50, and 0·75) of milk production traits and somatic cell score (SCS) in Iranian Holstein dairy cows. Data were collected by the Animal Breeding Center of Iran from 1991 to 2011, comprising 101 051 monthly milk production traits and SCS records of 13 977 cows in 183 herds. Incomplete gamma (Wood), exponential (Wilmink), Dijkstra and polynomial (Ali & Schaeffer) functions were implemented in the quantile regression. Residual mean square, Akaike information criterion and log-likelihood from different models and quantiles indicated that in the same quantile, the best models were Wilmink for milk yield, Dijkstra for fat percentage and Ali & Schaeffer for protein percentage. Over all models the best model fit occurred at quantile 0·50 for milk yield, fat and protein percentage, whereas, for SCS the 0·25th quantile was best. The best model to describe SCS was Dijkstra at quantiles 0·25 and 0·50, and Ali & Schaeffer at quantile 0·75. Wood function had the worst performance amongst all traits. Quantile regression is specifically appropriate for SCS which has a mixed multimodal distribution.


2007 ◽  
Vol 87 (3) ◽  
pp. 285-289 ◽  
Author(s):  
Nilufer Sabuncuoglu ◽  
Omer Coban

The objectives of this study were to determine the relationship between udder floor area (UFA) and milk production traits in dairy cows, pre- and post-milking, as well as to examine the usefulness of a simple method of measuring UFA. The absolute reduction (AR, cm2) and relative reduction (RR, %) in UFA post-milking relative to pre-milking was calculated. Absolute reduction was influenced by breed and lactation stage, but not by parity of the cows (P < 0.05). There was no effect of breed and stage of lactation on the RR of UFA. Moderate correlations were observed between absolute reduction of UFA and daily milk yield (r2 = 0.422), lactation milk yield (r2 = 0.426), and absolute fat yield (r2 = 0.515) (P < 0.01 and P < 0.05). Moderate and weak correlations were found between RR of UFA and daily milk yield (r2 = 0.335) (P < 0.01), AR of the udder area and the 305-d lactation milk yield (r2 = 0.326) (P < 0.10). It was concluded that measuring UFA using the method described may be useful for the selection of dairy cattle mammary conformation traits. Key words: Dairy cow, udder and teat conformation, milk production traits, measurement technique


Author(s):  
Bridget Drew ◽  
J A Foulkes ◽  
Jill F B Altman

The results of studies undertaken outside the United Kingdom suggest that the inclusion of 50 g of 30% protected DL Methionine (Ketionin) into the ration of conventionally fed dairy cows improves feed utilisation, milk yield, fertility and health. For instance (Spørndly (1981) in Sweden measured the weight of cows during the experimental period and found that the weight loss in the control group was twice that of the cows that received Ketionin. In West Germany a significant increase in milk of 2.0 kg per day was obtained by Kaufmann and Hagemeister (1980) and similar results were reported by Kuther (1982). Stoikov (1978) in studies on 673 cows in Bulgaria showed an improvement in calving rate from 37% in the control group to 55% in the treated group and Daugaard (1978) working in Denmark reported that the inclusion of Ketionin reduced the incidence of Ketosis.


2017 ◽  
Vol 57 (7) ◽  
pp. 1233 ◽  
Author(s):  
J. B. Garner ◽  
M. Douglas ◽  
S. R. O. Williams ◽  
W. J. Wales ◽  
L. C. Marett ◽  
...  

The objective of the present research was to describe the physiological and production responses of lactating dairy cows during and after sudden exposure to temperate-climate heat-wave conditions, compared with cows in thermoneutral conditions. Twelve lactating multiparous Holstein–Friesian dairy cows were housed in controlled-climate chambers for 4 days. Six were exposed to a short-term temperature and humidity challenge (THc, diurnal temperature and humidity fluctuations inducing moderate heat stress; temperature humidity index 74–84) and six cows were exposed to thermoneutral conditions (THn, temperatur humidity index 55–61). Cows were also measured during a 7-day pre-experimental and 14-day post-experimental period. Physiological indicators of heat stress were measured, including rectal and vaginal temperature and respiration rate, which indicated that the THc in controlled-climate chambers induced moderate heat stress. The cows exposed to the 4-day THc reduced their milk yield by 53% and their dry-matter intake by 48%, compared with the cows in the THn treatment. Milk yield of THc cows returned to pre-experimental milk yield by Day 7 and dry-matter intake by Day 4 of the post-experimental period. The short-term heat challenge induced metabolic adaptations by mobilising adipose tissue, as indicated by increased non-esterified fatty acids, and amino acids from skeletal muscle, as indicated by increased urea nitrogen to compensate for reduced nutrient intake and increased energy expenditure. Endocrine responses included greater prolactin concentrations, which is associated with thermoregulation and water metabolism. The cows exposed to THc displayed production and physical responses that facilitated lower metabolic heat production and greater heat dissipation in an attempt to maintain homeostasis during the short-term heat exposure. These results indicated that the conditions imposed on the cows in the controlled-climate chambers were sufficient to induce heat-stress responses and adversely affected production in the lactating dairy cow, and the delay between the return to normal feed intake and milk yield following the heat challenge suggests a period of metabolic recovery was occurring.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Robert Mikuła ◽  
Marcin Pszczola ◽  
Katarzyna Rzewuska ◽  
Sebastian Mucha ◽  
Włodzimierz Nowak ◽  
...  

The objective of this study was to determine the effect of the rumination time on milk yield and composition as well as methane emission during lactation in high-yielding dairy cows fed a partial mixed ration based on maize silage without pasture access. A total of 365 high-yielding Polish Holstein-Friesian multiparous dairy cows were included in the study covering 24 to 304 days of lactation. Methane emission, rumination time, and milk production traits were observed for the period of 12 months. Next, the data from the cows were assigned to three groups based on daily rumination time: low rumination up to 412 min/day (up to 25th rumination percentile), medium rumination from 412 to 527 min/day (between the 25th and 75th percentile), and high rumination above 527 min/day (from the 75th percentile). Rumination time had no effect on milk yield, energy-corrected milk yield, or fat and protein-corrected milk yield. High rumination time had an effect on lower fat concentration in milk compared with the medium and low rumination groups. The highest daily CH4 production was noted in low rumination cows, which emitted 1.8% more CH4 than medium rumination cows and 4.2% more than high rumination cows. Rumination time affected daily methane production per kg of milk. Cows from the high rumination group produced 2.9% less CH4 per milk unit compared to medium rumination cows and 4.6% in comparison to low rumination cows. Similar observations were noted for daily CH4 production per ECM unit. In conclusion, a longer rumination time is connected with lower methane emission as well as lower methane production per milk unit in high-yielding dairy cows fed a maize silage-based partial mixed ration without pasture access.


1992 ◽  
Vol 55 (2) ◽  
pp. 163-168 ◽  
Author(s):  
A. Veldman ◽  
J. A. C. Meijs ◽  
G. J. Borggreve ◽  
J. J. Heeres-van der Tol

AbstractTwo experiments were made. In experiment 1, dairy cows in early lactation (2 to 4 weeks) and dairy cows in late lactation (34 to 36 weeks) were given aflatoxin B, (AFBt)at a level of 34 to 39 fig/day by feeding them contaminated compound food. The aflatoxin Mrcontent(AFMj) of raw milk was determined four times during the experimental period of 14 days. The milk yield was measured daily.The carry-over rate of aflatoxin was proportionately 0·062 and 0·018 for cows in early and late lactation respectively. This difference was not only due to milk production level but possibly also associated to AFB, liver metabolism.In experiment 2, eight high (40 kg milk per day) and eight low (16 kg milk per day) milk yielding cows, carry-over of AFB1 from compound food into AFM, in milk was measured at different levels ofAFB7 intake ranging from 7 to 57 fig/day. Independent of AFBj-intake, high-producing dairy cows had a higher carry-over rate than low producing animals (proportionately 0·038 v. 0·025). Carry-over ofAFB1 to AFM, was linearly correlated with milk yield. Variations in the level of AFM1 in milk of individual cows were not due to variations in milk yield. The relationship between AFB2 intake per day and AFM^content in milk per kg could be described by the formula: AFMj (ng/kg milk) = 119 AFB, intake (fig per cow per day) + 1·9. This means that in order to produce milk with less than 0·05 fig AFM, per kg milk the average daily individual intake in a herd should be limited to 40 fig AFB7 per day.As dairy cows in their early to mid lactation period consume large quantities of compound food, a maximum level of AFB3 in dairy foods has to be set at an acceptable daily intake (ADI) value to guarantee that AFM1 levels in milk do not exceed tolerable levels.


Sign in / Sign up

Export Citation Format

Share Document