scholarly journals Effect of silicon on aphid populations and wheat yield in Minas Gerais, Brazil

2020 ◽  
Vol 41 (6) ◽  
pp. 2481-2494
Author(s):  
Gabriel Fernandes Rezende ◽  
◽  
Marcus Vinicius Sampaio ◽  
Beliza Queiroz Vieira Machado ◽  
Diego Tolentino de Lima ◽  
...  

The area cultivated with wheat has been increasing in the savannahs of the state of Minas Gerais, Brazil. Aphids are usually one of the main pests of wheat in many regions of the world; however, little is known about the aphid population in this new environment. The southern region of Brazil, the main wheat production area, has had several problems as a result of aphids, but aphid populations and the resulting impact on wheat production have not been investigated in these new crop production areas. Understanding control strategies to manage this insect could be essential for the “Cerrado” wheat that is grown in this area. The application of silicon (Si) has the potential to reduce the population growth of wheat aphids; however no field studies have been reported. Hence, we evaluated the effect of Si fertilization via soil application on the aphid populations and species composition and on yield components of wheat in three locations in Minas Gerais; the experiment was repeated simultaneously in Uberlândia, at the experimental areas of UFU and IFTM, and in Montes Claros, at the experimental area of UFMG, using the cultivars BRS 264 and BRS 394. The aphids first appeared just before wheat earing; they were then sampled six times over the course of the study, seven days apart, starting from 45 days after sowing. The aphid species Sitobion avenae (Fabricius), Schizaphis graminum (Rondani), and Rhopalosiphum padi (Linnaeus) were observed in all three locations; S. avenae was the dominant species in all locations. The experimental area of UFU had the highest number of S. avenae aphids per tiller for both cultivars, while UFMG had the lowest populations. Aphid populations and wheat yield components were not affected by soil Si fertilization. There was no difference in yield as a result of location or cultivar, but the location UFU and the cultivar BRS 394 had the greatest average hectoliter weight.

2020 ◽  
Vol 15 (3) ◽  
pp. 31-36
Author(s):  
Munira Otambekova ◽  
Bahriddin Solihov ◽  
Bahromiddin Husenov ◽  
Hafiz Mumindzhanov

Wheat is a major crop with a key role for food security in Tajikistan. A clear understanding of the major constraints and opportunities relating to wheat production and sustainability in farmers’ fields is therefore required. Monitoring of pests, diseases and weeds in the wheat fields of different sizes, located in different agricultural zones in Tajikistan and at different altitudes, was conducted during (2003–2016). A questionnaire on wheat production and sustainability, seeking overall information about farms and specific data on crop management practices, was applied. The results showed that the agronomic knowledge of Tajik farmers was generally poor and that wheat yield was low, affecting social, economic, and environmental sustainability. The farms surveyed were generally small, growing winter wheat for human consumption year after year. Seeds were hand-broadcast at the optimal sowing time, without chemical treatments and either wheat or technical crops were used as preceding crops. The low knowledge status of wheat farmers influenced crop performance and were correlated with lack of crop rotation, while the lack of pest management resulted in high levels of weeds and severe insect damage. Wheat production on small farms still relied heavily on manual labor, while larger farms used more machinery. Most of the Tajik wheat varieties and lines screened were found to be susceptible to at least one of the diseases screened for, i.e., stripe rust, leaf rust, and common bunt. Our findings demonstrate a need for concerted action to overcome wheat yield constraints and achieve sustainabшlity in crop production in Tajikistan. Education of farmers appears key to improving social, economic, and environmental sustainability. Use of certified seed of suitable wheat varieties and appropriate crop management practices, including weed control while also taking biodiversity into consideration, are other important measures for increasing wheat yield and improving sustainability


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 744
Author(s):  
Serdar Satar ◽  
Nickolas G. Kavallieratos ◽  
Mustafa Tüfekli ◽  
Gül Satar ◽  
Christos G. Athanassiou ◽  
...  

The reproduction of aphids depends to a great extent on their host plants, an integration that impacts on the successful expansion of overwintering populations. Therefore, a survey was conducted to evaluate the globally distributed Capsella bursa-pastoris as an overwintering host of economically important aphid species, their parasitoids and hyperparasitoids in the southern and western regions of Turkey from November to March in 2006 to 2013. During this survey, 395 samples of C. bursa-pastoris were collected with 25 aphid species recorded. Among aphids that feed on this host, Myzus persicae, Aphis gossypii, Rhopalosiphum padi, Aphis fabae, Aphis craccivora, Lipaphis erysimi, and Brevicoryne brassicae were the most frequently recorded. In total, 10,761 individual parasitoids were identified. Binodoxys angelicae, Aphidius colemani, Aphidius matricariae, Diaeretiella rapae, Ephedrus persicae, and Lysiphlebus confusus were the most abundant aphidiines that emerged from the aphids collected from C. bursa-pastoris. Alloxysta spp. (Hymenoptera: Cynipoidea), Chalcidoidea (unidentified at genus level), and Dendrocerus spp. (Hymenoptera: Ceraphronoidea) were identified as hyperparasitoids on the parasitoids. These findings indicate that C. bursa-pastoris is a key non-agricultural plant that significantly contributes to the overwintering of numerous aphids and their parasitoids, which should be given serious consideration when biological control strategies are designed.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1240
Author(s):  
Peder K. Schmitz ◽  
Joel K. Ransom

Agronomic practices, such as planting date, seeding rate, and genotype, commonly influence hard red spring wheat (HRSW, Triticum aestivum L. emend. Thell.) production. Determining the agronomic optimum seeding rate (AOSR) of newly developed hybrids is needed as they respond to seeding rates differently from inbred cultivars. The objectives of this research were to determine the AOSR of new HRSW hybrids, how seeding rate alters their various yield components, and whether hybrids offer increased end-use quality, compared to conventional cultivars. The performance of two cultivars (inbreds) and five hybrids was evaluated in nine North Dakota environments at five seeding rates in 2019−2020. Responses to seeding rate for yield and protein yield differed among the genotypes. The AOSR ranged from 3.60 to 5.19 million seeds ha−1 and 2.22 to 3.89 million seeds ha−1 for yield and protein yield, respectively. The average AOSR for yield for the hybrids was similar to that of conventional cultivars. However, the maximum protein yield of the hybrids was achieved at 0.50 million seeds ha−1 less than that of the cultivars tested. The yield component that explained the greatest proportion of differences in yield as seeding rates varied was kernels spike−1 (r = 0.17 to 0.43). The end-use quality of the hybrids tested was not superior to that of the conventional cultivars, indicating that yield will likely be the determinant of the economic feasibility of any future released hybrids.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1295
Author(s):  
Ahossi Patrice Koua ◽  
Mirza Majid Baig ◽  
Benedict Chijioke Oyiga ◽  
Jens Léon ◽  
Agim Ballvora

Nitrogen (N) is a vital component of crop production. Wheat yield varies significantly under different soil available N. Knowing how wheat responds to or interacts with N to produce grains is essential in the selection of N use efficient cultivars. We assessed in this study variations among wheat genotypes for productivity-related traits under three cropping systems (CS), high-nitrogen with fungicide (HN-WF), high-nitrogen without fungicide (HN-NF) and low-nitrogen without fungicide (LN-NF) in the 2015, 2016 and 2017 seasons. ANOVA results showed genotypes, CS, and their interactions significantly affected agronomic traits. Grain yield (GY) increased with higher leaf chlorophyll content, importantly under CS without N and fungicide supply. Yellow rust disease reduced the GY by 20% and 28% in 2015 and 2016, respectively. Moreover, averaged over growing seasons, GY was increased by 23.78% under CS with N supply, while it was greatly increased, by 52.84%, under CS with both N and fungicide application, indicating a synergistic effect of N and fungicide on GY. Fungicide supply greatly improved the crop ability to accumulate N during grain filling, and hence the grain protein content. Recently released cultivars outperformed the older ones in most agronomic traits including GY. Genotype performance and stability analysis for GY production showed differences in their stability levels under the three CS. The synergistic effect of nitrogen and fungicide on grain yield (GY) and the differences in yield stability levels of recently released wheat cultivars across three CS found in this study suggest that resource use efficiency can be improved via cultivar selection for targeted CS.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 369
Author(s):  
Pasqua Veronico ◽  
Maria Teresa Melillo

Plant parasitic nematodes are annually responsible for the loss of 10%–25% of worldwide crop production, most of which is attributable to root-knot nematodes (RKNs) that infest a wide range of agricultural crops throughout the world. Current nematode control tools are not enough to ensure the effective management of these parasites, mainly due to the severe restrictions imposed on the use of chemical pesticides. Therefore, it is important to discover new potential nematicidal sources that are suitable for the development of additional safe and effective control strategies. In the last few decades, there has been an explosion of information about the use of seaweeds as plant growth stimulants and potential nematicides. Novel bioactive compounds have been isolated from marine cyanobacteria and sponges in an effort to find their application outside marine ecosystems and in the discovery of new drugs. Their potential as antihelmintics could also be exploited to find applicability against plant parasitic nematodes. The present review focuses on the activity of marine organisms on RKNs and their potential application as safe nematicidal agents.


2015 ◽  
Vol 33 (4) ◽  
pp. 679-687 ◽  
Author(s):  
M.Z. IHSAN ◽  
F.S. EL-NAKHLAWY ◽  
S.M. ISMAIL

ABSTRACT Understanding the critical period of weed competition is indispensable in the development of an effective weed management program in field crops. Current experiment was planned to evaluate the critical growth period ofSetaria and level of yield losses associated with delay in weeding in rain-fed drip irrigated wheat production system of Saudi Arabia. Field experiment was conducted to evaluate the effect of weeding interval (07-21, 14-28, 21-35, 28-42 and 35-49 days after sowing) and drought stress (75% and 50% of field capacity) on Setaria growth, wheat yield and water use efficiency. Season long weedy check and wellwatered (100% FC) plots were also maintained for comparison. Weeding interval and drought stress significantly (p ≤ 0.05) affected the growth and yield of Setaria and wheat. Drought stress from 75% to 50% FC resulted in reductions of 29-40% in Setaria height, 14-27% in Setaria density and 11-26% in Setaria dry biomass. All weeding intervals except 35-49 DAS significantly suppressedSetaria growth as compared with control. Delay in weeding increased weed-crop competition interval and reduced wheat yield and yield contributors. Therefore, the lowest yield of 1836 kg ha-1 was attained for weeding interval of 35-49 DAS at 50% FC. Water use efficiency and harvest index increased with decreasing FC levels but reduced with delay in weeding. Correlation analysis predicted negative association ofSetariadensity with wheat yield and yield contributors and the highest negative association was for harvest index (-0.913) and water use efficiency (-0.614). Early management of Setaria is imperative for successful wheat production otherwise yield losses are beyond economical limits.


2014 ◽  
Vol 94 (2) ◽  
pp. 425-432 ◽  
Author(s):  
R. E. Karamanos ◽  
K. Hanson ◽  
F. C. Stevenson

Karamanos, R., Hanson, K. and Stevenson, F. C. 2014. Nitrogen form, time and rate of application, and nitrification inhibitor effects on crop production. Can. J. Plant Sci. 94: 425–432. Nitrogen management options for anhydrous ammonia (NH3) and urea were compared in a barley–wheat–canola–wheat cropping sequence (2007–2010) at Watrous and Lake Lenore, SK. The treatment design included a factorial arrangement of N fertilizer form (NH3versus urea), nitrification inhibitor application, time of N application (mid-September, mid- to late October, and spring) and four N fertilizer rates (0, 40, 80 and 120 kg ha−1). Anhydrous ammonia applications at 40 kg N ha−1in 2008 (fall) and in 2010 (all times of application) resulted in wheat yield reductions relative to the same applications for urea. For wheat years, yield was reduced for both fall versus spring N fertilizer applications, when no nitrification inhibitor was applied and the inclusion of nitrification inhibitor maintained wheat yield at similar levels across all times of N fertilizer applications, regardless of form. Protein concentration was approximately 2 g kg−1greater with urea compared with NH3at both sites in 2008 and only at Watrous in 2010. Also, early versus late fall N fertilizer applications consistently increased N concentration of grain only for the 40 and/or 80 kg N ha−1rates. Effects of nitrification inhibitor on N concentration were not frequent and appeared to be minimal. Urea had greater agronomic efficiency (AE) than NH3at the lower N fertilizer rates. The nitrification inhibitor had a positive effect on wheat AE only for early fall N fertilizer applications. It can be concluded that for maximum yields NH3or urea will be suitable if applied at rates of 80 kg N ha−1and greater. If N fertilizer is applied at 40 kg N ha−1, especially in fall without inhibitor, urea is better. In terms of protein concentration for wheat, urea seemed to better than NH3and fall was better than spring application.


2020 ◽  
Vol 13 ◽  
pp. 110-114
Author(s):  
Andrei Chiriloaie-Palade ◽  
Mădălina Radulea ◽  
Gheorghe Lămureanu ◽  
Ștefan Ion Mocanu ◽  
Maria Iamandei

"The cosmopolitan aphid species Myzus persicae is a key pest of peach orchards in south and southeastern Romania. The phenomenon of resistance induced by the intensive use of insecticides is a matter of concern for farmers and protectionists, making necessary integrated measure for the control of this pest. Conservation of natural enemy’s populations is an essential component of any management system proposed for pest aphids. The aim of the study was to determine the structure of predatory insects associated with Myzus persicae populations in peach orchards. The research was carried out in three orchards from two localities from Constanta County, in peach plantations with Springcrest variety aged 7, 11 and 12 years. As a result of this study, there were determined a total of 15 predatory insect species belonging to eight systematic families: Coccinellidae, Chrysopidae, Hemerobiidae, Syrphydae, Cecidomyiidae, Panorpidae, Nabidae and Forficulidae, which naturally contribute to the reduction of the green peach aphid populations. "


Agriculture ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 125 ◽  
Author(s):  
Vitus Ikechukwu Obi ◽  
Juan José Barriuso ◽  
Yolanda Gogorcena

The peach is one of the most important global tree crops within the economically important Rosaceae family. The crop is threatened by numerous pests and diseases, especially fungal pathogens, in the field, in transit, and in the store. More than 50% of the global post-harvest loss has been ascribed to brown rot disease, especially in peach late-ripening varieties. In recent years, the disease has been so manifest in the orchards that some stone fruits were abandoned before harvest. In Spain, particularly, the disease has been associated with well over 60% of fruit loss after harvest. The most common management options available for the control of this disease involve agronomical, chemical, biological, and physical approaches. However, the effects of biochemical fungicides (biological and conventional fungicides), on the environment, human health, and strain fungicide resistance, tend to revise these control strategies. This review aims to comprehensively compile the information currently available on the species of the fungus Monilinia, which causes brown rot in peach, and the available options to control the disease. The breeding for brown rot-resistant varieties remains an ideal management option for brown rot disease control, considering the uniqueness of its sustainability in the chain of crop production.


Sign in / Sign up

Export Citation Format

Share Document