scholarly journals Seismic hazard in Australia and New Zealand

Author(s):  
D. J. Dowrick ◽  
G. Gibson ◽  
K. McCue

As a prelude to the planned harmonization of building codes in Australia and New Zealand, this paper illustrates the seismic hazard in the two countries for discussion purposes. Hazard maps for peak ground acceleration for a 475 year return period are presented, and also for 2500 year return period in New Zealand, along with typical response spectra. It is shown that the hazard in the least seismic parts of New Zealand is similar to that of the more seismically active parts of Australia. The eventual harmonized loadings code would accommodate regional differences in hazard by using different response spectra and zone factors appropriate to the different regions of the two countries.

2010 ◽  
Vol 1 (1) ◽  
pp. 25-41 ◽  
Author(s):  
T. G. Sitharam ◽  
K. S. Vipin

The local site effects play an important role in the evaluation of seismic hazard. The proper evaluation of the local site effects will help in evaluating the amplification factors for different locations. This article deals with the evaluation of peak ground acceleration and response spectra based on the local site effects for the study area. The seismic hazard analysis was done based on a probabilistic logic tree approach and the peak horizontal acceleration (PHA) values at the bed rock level were evaluated. Different methods of site classification have been reviewed in the present work. The surface level peak ground acceleration (PGA) values were evaluated for the entire study area for four different site classes based on NEHRP site classification. The uniform hazard response spectrum (UHRS) has been developed for the city of Bangalore and the details are presented in this work.


2018 ◽  
Vol 195 ◽  
pp. 03019
Author(s):  
Rian Mahendra Taruna ◽  
Vrieslend Haris Banyunegoro ◽  
Gatut Daniarsyad

The Lombok region especially Mataram city, is situated in a very active seismic zone because of the existence of subduction zones and the Flores back arc thrust. Hence, the peak ground acceleration (PGA) at the surface is necessary for seismic design regulation referring to SNI 1726:2012. In this research we conduct a probabilistic seismic hazard analysis to estimate the PGA at the bedrock with a 2% probability of exceedance in 50 years corresponding to the return period of 2500 years. These results are then multiplied by the amplification factor referred from shear wave velocity at 30 m depth (Vs30) and the microtremor method. The result of the analysis may describe the seismic hazard in Mataram city which is important for building codes.


Author(s):  
A. K. Ghosh ◽  
H. S. Kushwaha

The various uncertainties and randomness associated with the occurrence of earthquakes and the consequences of their effects on the NPP components and structures call for a probabilistic seismic risk assessment (PSRA). However, traditionally, the seismic design basis ground motion has been specified by normalised response spectral shapes and peak ground acceleration (PGA). The mean recurrence interval (MRI) used to be computed for PGA only. The present work develops uniform hazard response spectra i.e. spectra having the same MRI at all frequencies for Kakrapar Atomic Power Station site. Sensitivity of the results to the changes in various parameters has also been presented. These results determine the seismic hazard at the given site and the associated uncertainties. The paper also presents some results of the seismic fragility for an existing containment structure. The various parameters that could affect the seismic structural response include material strength of concrete, structural damping available within the structure and the normalized ground motion response spectral shape. Based on this limited case study the seismic fragility of the structure is developed. The results are presented as families of conditional probability curves plotted against the peak ground acceleration (PGA). The procedure adopted incorporates the various randomness and uncertainty associated with the parameters under consideration.


2020 ◽  
Vol 9 (2) ◽  
pp. 116
Author(s):  
Rohima Wahyu Ningrum ◽  
Wiwit Suryanto ◽  
Hendra Fauzi ◽  
Estuning Tyas Wulan Mei

The earthquake that occurred in the West Halmahera region was very detrimental, even though the human casualties were not very significant. But it will affect the stability and capacity of a region in terms of regional development. The mapping of earthquake-prone areas is carried out by a probabilistic seismic hazard analysis (PSHA) method to analyze soil movement parameters, namely Peak Ground Acceleration so that it can determine earthquake-prone areas in West Halmahera. The results of seismic hazard analysis show that the West Halmahera area is an area that is relatively prone to earthquake hazards because it is still strongly influenced by subduction (megathrust) earthquakes from the Philippine plate, Maluku sea and Sangihe. This is indicated by the value of earthquake acceleration on the Peak Ground Acceleration for the 500 year return period of around 0.38 - 3.69 g and 0.30 - 3.69 g for the 2500 year return period.


Author(s):  
Sitharam T. G. ◽  
Vipin K. S.

The local site effects play an important role in the evaluation of seismic hazard. The proper evaluation of the local site effects will help in evaluating the amplification factors for different locations. This article deals with the evaluation of peak ground acceleration and response spectra based on the local site effects for the study area. The seismic hazard analysis was done based on a probabilistic logic tree approach and the peak horizontal acceleration (PHA) values at the bed rock level were evaluated. Different methods of site classification have been reviewed in the present work. The surface level peak ground acceleration (PGA) values were evaluated for the entire study area for four different site classes based on NEHRP site classification. The uniform hazard response spectrum (UHRS) has been developed for the city of Bangalore and the details are presented in this work.


2010 ◽  
Vol 10 (1) ◽  
pp. 51-59 ◽  
Author(s):  
G-A. Tselentis ◽  
L. Danciu

Abstract. The present third part of the study, concerning the evaluation of earthquake hazard in Greece in terms of various ground motion parameters, deals with the deaggregation of the obtained results The seismic hazard maps presented for peak ground acceleration and spectral acceleration at 0.2 s and 1.0 s, with 10% probability of exceedance in 50 years, were deaggregated in order to quantify the dominant scenario. There are three basic components of each dominant scenario: earthquake magnitude (M), source-to-site distance (R) and epsilon (ε). We present deaggregation maps of mean and mode values of M-R-ε triplet showing the contribution to hazard over a dense grid.


1996 ◽  
Vol 12 (2) ◽  
pp. 199-216 ◽  
Author(s):  
Yu K. Chernov ◽  
V. Yu Sokolov

The Spitak (Armenia) earthquake of December 7, 1988, (M=6.9) revealed the necessity to revise the assessments of seismic hazard obtained in the past. We used recently developed method for quantitative probabilistic assessment of seismic shaking to resolve the problem. The assessments of probable intensity of shaking in terms of MSK - 64 intensity scale showed that for this region the intensity with return period T=1000 years must be taken as MSK IX instead of MSK VII and MSK VIII assigned to Armenia by the building code. Probable Fourier and response spectra of ground acceleration have been estimated also, and may be used for design and construction of new building and structures in this region.


2020 ◽  
Vol 20 (2) ◽  
pp. 207-220
Author(s):  
Hyun Woo Jee ◽  
Sang Whan Han

The 2016 Gyeongju and 2017 Pohang earthquakes caused casualties and economic damage in the surrounding areas. Therefore, the importance of earthquake damage prediction and seismic design in the Korean peninsula has increased. Probabilistic seismic hazard analysis (PSHA) is one of the well-known methods for predicting earthquake damage. The objective of this study is to construct Korean Peninsula seismic hazard maps of 5% damped response spectrum acceleration and peak ground acceleration, using PSHA. To consider the local effects for each site's classification, seismic hazard maps were constructed by considering the site amplification model. To conduct seismic design, uniform hazard response spectra (UHRS) were also constructed for the Korean peninsula.


2015 ◽  
Vol 2 (2) ◽  
Author(s):  
Myo Thant ◽  
Subagyo Pramumijoyo ◽  
Heru Hendrayana ◽  
Hiroshi Kawase ◽  
Agus Darmawan Adi

The probabilistic seismic hazard maps are developed for Yogyakarta depression area. The earthquake catalog of ANSS (1970-2007) is taken into account with the complement of NEIC (USGS, 1973-2007) and the records of BMG (2000-2004). On the basis of seismicity of the area, tectonics and geological information, the seismic source zones are characterized for this area. The seismicity parameters of each seismic source are determined by applying the classical Gutenberg-Richter recurrence model, regarding the historical records. The attenuation relation for Yogyakarta depression area cannot be evaluated since the sufficient strong ground motion records are not available for this region. Therefore the attenuation relations which were developed for other territories as Europe and Japan are used for the present hazard calculation by validating, using the aftershocks records, modeling the peak ground acceleration maps for the recent event, 27 May, 2006, Yogyakarta earthquake inserting the damage area distribution pattern. The probabilistic seismic hazard maps are finally developed by using the McGuire (1976) EQRISK computer program by modifying for the present purpose. The seismic hazard maps expressed in term of peak ground acceleration are developed for the recurrence intervals of 10, 50, 100, 200 and 500 years


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
B. Tavakoli ◽  
M. Ghafory-Ashtiany

The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA) for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.


Sign in / Sign up

Export Citation Format

Share Document