scholarly journals Controlled deep perforation by radial drilling of channels with the "Perfobur" technical system to intensify the reservoir inflow

2021 ◽  
Vol 3 (2) ◽  
pp. 99-110
Author(s):  
A. I. Bashirov ◽  
I. R. Galas ◽  
I. A. Лягов ◽  
M. F. Nazyrov

The paper presents a technology for controlled deep penetrating perforation using the Perfobur technical system to intensify inflow by drilling radial channels 69 mm in diameter, up to 25 metres in length. This technology was first applied to a carbonate reservoir in the Bashkirian tier, characterised by high heterogeneity and close proximity of bedrock water. An adjacent well, close to the acid fracture well, with identical reservoir properties, was selected. Well "A" was acid fractured and well "B" was drilled using Perfobur technology with two directional channels, each 14 metres in length. In well "B", after drilling the channels, hydrochloric acid solution was injected through a special hydromonitor nozzle at two points. A total of 48 m3 of acid was injected into the "B" well. Comparing the results of well "B" with the well where the hydrofracturing was performed allow speaking about high efficiency of the controlled radial drilling technology. The ability to predict the channel trajectory, knowledge of its actual trajectory in combination with acid treatment of the reservoir using hydromonitor nozzle at a considerable distance from the reservoir allows achieving a significant increase in oil flow rate with lower water cut of the produced oil.

2021 ◽  
Vol 73 (06) ◽  
pp. 53-54
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202661, “Combination of Radial Drilling Technology With Acid Jetting: New Approach in Carbonate Reservoir Stimulation,” by Ayrat Bashirov, Ilya Lyagov, and Ilya Galas, Perfobur, prepared for the 2020 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, held virtually 9–12 November. The paper has not been peer reviewed. The complete paper describes an approach to stimulate carbonate formations with bedding water or a gas cap. The technique is a combination of acid jetting and a radial drilling technology that uses mechanical radial drilling with a slim mud motor. The primary advantages of the technology include controlled trajectory and the possibility of re-entry into channels. The novelty of the technology is in its ability to deploy acids in the rock far away from the wellbore through the mechanically drilled holes with known depths and azimuths. Reservoir Description The mature field is in central Russia in the Republic of Bashkortostan. The field contains both sandstone and carbonate reservoirs. Oil depth is from 780 to 1830 m. Six reservoirs are in development. This study concentrates on projects in a carbonate formation that is a substage of the early Pennsylvanian Period. This formation is highly heterogeneous with closely underlying water. Permeability of the reservoir is approximately 43 md; reservoir pressure is 1,000 psi, and oil density is 0.891 g/cm3. Two adjacent well candidates with identical reservoir properties were selected for the study, with a distance between wells of approximately 136 m. Net oil thickness in Well A is 4.4 m and 3 m in Well B. Mechanical Radial Drilling Technology The technology described by the authors uses mechanical radial drilling with a slim mud motor. The technology allows the drilling of a network of radial channels up to 15 m long with up to four channels of different trajectories on one level. The technical system features a modular construction for ease of assembly at the wellhead area and increased operational efficiency. The main elements of the technical system include the following: - Pipe pusher connected at the top with an overflow valve module and, at the bottom, with a guiding device connected by means of a hydraulic pusher - Flexible pipe assembly with a small (nonstandard) sectional mud motor - Drilling bit (milling cutter for window cutting) - Special whipstock and an anchor module with an orienting funnel connected from below to the pipe frame


2021 ◽  
Author(s):  
Effiong Essien ◽  
Uchenna Onyejiaka ◽  
Stanley Onwukwe ◽  
Nnaemeka Uwaezuoke

Abstract Poor formation permeability and near well bore damage may limit water injectivity into the reservoir in a water injection project. This paper seeks to evaluate the effect of radial drilling technique on water injectivity and oil recovery in water flooding operation. Radial drilling technology utilizes hydraulic energy to create lateral perpendicular small holes through the casing into the reservoir. The holes may extend to 100 m (330 ft) into the reservoir to access fresh formations beyond the near wellbore, and damage zone. A black oil simulator (Eclipse 100) was used to modeling a lateral radial drill from the borehole into the reservoir, and that of a conventional perforation of the wellbore respectively. A simulation study was carried out using various presumed radial drill configurations in determining injectivity index, displacement efficiencies, recovery factor and water cut of the process. The determined results were further compared with that of the conventional perforation process case respectively. The results show a significant improvement in water injectivity in radial drill case with the increasing length and number of radials as compared to the conventional wellbore perforation case. The determined Recovery factor shows a progressive increase with increase in the numbers of radials drilled, irrespective of the radial length. However, it was observed that, the more the number and length of the radials drilled in to the reservoir, the higher the water cut from producer wells. Radial Drilling Technology, therefore, has a promising potential to improving water injectivity into the reservoir and thereby optimizing oil recovery in a water flooding operation.


2021 ◽  
Author(s):  
Ahmad Zahid Murshidi Zakaria ◽  
Muhammad Idham Khalid ◽  
Shahrul Nizam Mohd Effendi ◽  
Mark Arathoon ◽  
Mohamad Zakwan Zainal Abidin ◽  
...  

Abstract With the current uncertain situation regarding the stability of oil prices in the world, operators have been pushed to develop their available resources in a cost-effective way. Lately, there has been increased interest in the application of Coiled Tubing Drilling, especially for accessing bypassed hydrocarbon in mature or late-stage fields. This paper describes the feasibility study done to examine the possibility of using Coiled Tubing Drilling package/equipment to drill and complete a sidetrack well in a karstic carbonate reservoir with total losses issue by applying the principles of Pressurized Mud Cap Drilling (PMCD). This will be the first time that such method is being utilized for developing karstic carbonate reservoirs in Offshore Malaysia. The paper will go through the background of the project (generic field information, reservoir properties, well design and architecture), the critical design elements for the system (technical requirements, safety standards, operational and logistical factors) and the contingency scenarios considered. Based on the aforementioned items, a fit-for-purpose Coiled Tubing Drilling equipment arrangement together with suitable PMCD method and light annular mud (LAM) selection were proposed to cater for the specific challenges of the well. It was concluded that the application of PMCD using Coiled Tubing Drilling Package is feasible with some modification to the equipment, line up and operational procedures.


2018 ◽  
Vol 785 ◽  
pp. 125-132
Author(s):  
Vadim Aleksandrov ◽  
Marsel Kadyrov ◽  
Andrey Ponomarev ◽  
Vadim Golozubenko ◽  
Vladimir Kopyrin

The development and use of the radial drilling technology has been a controversial issue in the oil and gas industry for a long time. Nowadays, almost all big oil and gas producers deal with the question of its practical use at particular fields. The results of works carried out at carbonate reservoir units of the Orenburg Region were analyzed in the article. The ways to improve the existing technology of radial drilling were also offered. The research objective is to evaluate the technological efficiency of radial drilling application at the fields of the Volga-Ural oil and gas region with carbonate reservoir units. The results of radial drilling were characterized with the help of the detailed geological and field analysis and their quantitative evaluation was given.


Frequenz ◽  
2020 ◽  
Vol 74 (11-12) ◽  
pp. 383-392
Author(s):  
Rajveer S. Yaduvanshi ◽  
Richa Gupta ◽  
Saurabh Katiyar

AbstractSmartdielectric resonator antenna (DRA) having beam control mechanism is anew area to be explored by antenna researchers. Proposed new geometry DRA has low loss, design flexibility, high efficiency, compact size and desired radiated beam control. Developing beam control in new geometry DRAs is investigated for the first time in this letter. Unique technique for beam control and beam width control is proposed using pit top and mount top DRA. Gain is controlled from 5.0 to 9.98 dBi and beam is controlled from ±30° to ±70° in broadside radiation pattern. U shape pit DRA has maximum directive gain of 9.98 dBi and efficiency 98% at 5.8 GHz frequency. Measured and simulated results of radiation pattern and reflection coefficient are found to be in close proximity. Hardware of U shape pit top DRA, mount top DRA, left side arc top DRA, right side arc shape top DRA is developed and investigated. Mobile and cellular communication network need wide coverage, hence large beam width is required. Narrowing of beam width at higher order mode is also achieved.


2021 ◽  
Author(s):  
Valentina Zharko ◽  
Dmitriy Burdakov

Abstract The paper presents the results of a pilot project implementing WAG injection at the oilfield with carbonate reservoir, characterized by low efficiency of traditional waterflooding. The objective of the pilot project was to evaluate the efficiency of this enhanced oil recovery method for conditions of the specific oil field. For the initial introduction of WAG, an area of the reservoir with minimal potential risks has been identified. During the test injections of water and gas, production parameters were monitored, including the oil production rates of the reacting wells and the water and gas injection rates of injection wells, the change in the density and composition of the produced fluids. With first positive results, the pilot area of the reservoir was expanded. In accordance with the responses of the producing wells to the injection of displacing agents, the injection rates were adjusted, and the production intensified, with the aim of maximizing the effect of WAG. The results obtained in practice were reproduced in the simulation model sector in order to obtain a project curve characterizing an increase in oil recovery due to water-alternating gas injection. Practical results obtained during pilot testing of the technology show that the injection of gas and water alternately can reduce the water cut of the reacting wells and increase overall oil production, providing more efficient displacement compared to traditional waterflooding. The use of WAG after the waterflooding provides an increase in oil recovery and a decrease in residual oil saturation. The water cut of the produced liquid decreased from 98% to 80%, an increase in oil production rate of 100 tons/day was obtained. The increase in the oil recovery factor is estimated at approximately 7.5% at gas injection of 1.5 hydrocarbon pore volumes. Based on the received results, the displacement characteristic was constructed. Methods for monitoring the effectiveness of WAG have been determined, and studies are planned to be carried out when designing a full-scale WAG project at the field. This project is the first pilot project in Russia implementing WAG injection in a field with a carbonate reservoir. During the pilot project, the technical feasibility of implementing this EOR method was confirmed, as well as its efficiency in terms of increasing the oil recovery factor for the conditions of the carbonate reservoir of Eastern Siberia, characterized by high water cut and low values of oil displacement coefficients during waterflooding.


2020 ◽  
pp. 21-26
Author(s):  
E.H. Ahmadov ◽  

The paper studies the reduction rate of gas production in the wells of Bulla-deniz field drilled to VIII horizon. With this purpose, geological (reservoir properties, oil-gas saturation, net thickness, formation pressure and temperature, formation heterogeneity, multi-layer system, tectonic faults, physical-chemical properties of oil and gas etc.) and technological (well structure, measuring and transportation system, well operation regime, drilling technology etc.) conditions of formation were analyzed and the well model of VII and VIII horizons of Bulla-deniz field using these geological and technical parameters developed as well. For the estimation of impact of geological and technical aspects on production, sensitivity analysis was carried out on the models. The suggestions for elaboration of uncertainty of geological and technical parameters affecting production dynamics were developed. To reveal the reasons for production differences of the wells, it was proposed to install borehole manometers, to obtain the data on pressure recovery curves, drainage area, skin-effect impact, permeability and to develop a study plan of bottomhole zone with acid.


2021 ◽  
Author(s):  
Nasser Faisal Al-Khalifa ◽  
Mohammed Farouk Hassan ◽  
Deepak Joshi ◽  
Asheshwar Tiwary ◽  
Ihsan Taufik Pasaribu ◽  
...  

Abstract The Umm Gudair (UG) Field is a carbonate reservoir of West Kuwait with more than 57 years of production history. The average water cut of the field reached closed to 60 percent due to a long history of production and regulating drawdown in a different part of the field, consequentially undulating the current oil/water contact (COWC). As a result, there is high uncertainty of the current oil/water contact (COWC) that impacts the drilling strategy in the field. The typical approach used to develop the field in the lower part of carbonate is to drill deviated wells to original oil/water contact (OOWC) to know the saturation profile and later cement back up to above the high-water saturation zone and then perforate with standoff. This method has not shown encouraging results, and a high water cut presence remains. An innovative solution is required with a technology that can give a proactive approach while drilling to indicate approaching current oil/water contact and geo-stop drilling to give optimal standoff between the bit and the detected water contact (COWC). Recent development of electromagnetic (EM) look-ahead resistivity technology was considered and first implemented in the Umm Gudair (UG) Field. It is an electromagnetic-based signal that can detect the resistivity features ahead of the bit while drilling and enables proactive decisions to reduce drilling and geological or reservoir risks related to the well placement challenges.


Author(s):  
М. А. Куразов ◽  
З. Х. Газабиева ◽  
Р. Х. Моллаев ◽  
А. Ш. Халадов

Гидравлический разрыв пласта (ГРП) представляет собой комплексную технологию обработок скважин. При этом его следует рассматривать не только как средство воздействия на призабойную зону пласта (ПЗП), но и как один из существенных элементов системы разработки месторождения в целом. Технологические схемы ГРП, в том числе с последующим химическим воздействием, различаются в зависимости от коллекторских свойств обрабатываемых объектов. Их эффективность определяется условиями, связанными с фильтрационными характеристиками пластов, то есть коэффициентами проницаемости близлежащих и удаленных зон объекта. При этом подход к проектированию обработок ГРП будет различным в низко- и высокопроницаемых пластах, и в этой связи грамотный выбор скважин имеет существенное значение. Для исключения смыкания трещин после ГРП и снятия давления в призабойной зоне пласта (ПЗП) в скважины закачиваются различные расклинивающие агенты. Расклинивающие агенты (проппанты) должны противостоять напряжениям горной породы, удерживая трещину раскрытой после снятия гидравлического давления жидкости разрыва и обеспечивая, таким образом, высокую фильтрационную способность призабойной зоны пласта и дебиты нефти скважин. Обработки скважин проводятся с использованием стандартного нефтепромыслового оборудования и насосной техники. Промысловый опыт ГРП в условиях Верхне-Салымского месторождения (Западная Сибирь) показал его достаточно высокую эффективность. Hydraulic fracturing is a complex technology of well treatment. At the same time it should be considered not only as a means of impact on the bottom-hole zone of the formation, but also as one of the essential elements of the field development system as a whole. Technological schemes of MPG, including with subsequent chemical impact, differ depending on collector properties of processed objects. Their effectiveness is determined by conditions related to filtration characteristics of formations, i. e. permeability coefficients of nearby and remote zones of the object. At the same time, the approach to the design of GRP treatments will be different in low and highly permeable formations and in this regard, competent selection of wells is essential. Various proppantsare pumped into wells to prevent closing of cracks after MPG and to relieve pressure in bottom-hole zone of formation. Proppants (proppants) must withstand rock stresses by holding the fracture open after the hydraulic pressure of the fracturing fluid has been removed, and thus ensuring high filtration capacity of the bottom-hole formation zone and well oil flow rate. Well treatments are carried out using standard oil field equipment and pumping equipment. The field experience of GRP in the conditions of Verkhne-Salymsky field (Western Siberia) showed its rather high efficiency.


Sign in / Sign up

Export Citation Format

Share Document