C. Biodiesel Dari Minyak Biji Nyamplung Melalui Proses Transesterifikasi Dengan Reaktor Sistem Aliran Berkelanjutan

2019 ◽  
Vol 2 (1) ◽  
pp. 19-26
Author(s):  
Yanatra budi Pramana

This study aims to study the effect of temperature, flow velocity in the reactor and product flow velocity on FAME yield in the transesterification process of nyamplung seed oil into biodiesel in packed bed columns. As a whole the process involved includes degumming, acid catalyzed esterification and alkaline catalyzed transesterification. The transesterification process is carried out in a packed bed column. In the transesterification process, the fixed variable is the molar ratio of methanol to oil and the amount of NaOH catalyst to oil. While the independent variables are temperature, flow velocity in the reactor and the transesterification product flow rate and the response variable is (percentage)% FAME in the product. To obtain% FAME, product samples were analyzed using GC with internal standard methods.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2562 ◽  
Author(s):  
Chia-Hung Su ◽  
Hoang Nguyen ◽  
Uyen Pham ◽  
My Nguyen ◽  
Horng-Yi Juan

This study investigated the optimal reaction conditions for biodiesel production from soursop (Annona muricata) seeds. A high oil yield of 29.6% (w/w) could be obtained from soursop seeds. Oil extracted from soursop seeds was then converted into biodiesel through two-step transesterification process. A highest biodiesel yield of 97.02% was achieved under optimal acid-catalyzed esterification conditions (temperature: 65 °C, 1% H2SO4, reaction time: 90 min, and a methanol:oil molar ratio: 10:1) and optimal alkali-catalyzed transesterification conditions (temperature: 65 °C, reaction time: 30 min, 0.6% NaOH, and a methanol:oil molar ratio: 8:1). The properties of soursop biodiesel were determined and most were found to meet the European standard EN 14214 and American Society for Testing and Materials standard D6751. This study suggests that soursop seed oil is a promising biodiesel feedstock and that soursop biodiesel is a viable alternative to petrodiesel.


2012 ◽  
Vol 581-582 ◽  
pp. 133-137
Author(s):  
Hong Wang ◽  
Yan Lin Sun ◽  
Li Zhang

Abstract: This paper is focused on the preparation of biodiesel from crude rubber seed oil with high free fatty acids (FFA) content. The rubber seeds were collected in Xishuangbanna, Yunnan province. Two-step synthesis was selected to obtain the product, that is, acid catalyzed esterification was carried out first to decrease the FFA content, then methyl esters of fatty acids can be formed by alkaline transesterification. The reaction conditions of alkaline transesterification were investigated. The results show that the optimum technique is to carry out the reaction at 60°C for 1.5h, with the methanol-to-oil molar ratio 6:1, the catalyst amount 1.0% (g NaOH/ g oil). The yield can reach 75%. GC analysis shows the content of methyl esters of fatty acids is 82.29%. Some properties of biodiesel prepared are also presented.


Author(s):  
Candelaria Nahir Tejada-Tovar ◽  
Angel Villabona-Ortíz ◽  
Rodrigo Ortega Toro

The present work aimed to evaluate the effect of temperature, particle size and bed height of the chromium (VI) adsorption process using plantain peels in a continuous system. The experiment was carried out on a packed bed column, adjusting the feed temperature of the solution with a REX-C100 controller coupled to a type K thermocouple. The initial concentration of Cr (VI) was set at 100 ppm, the pH at 2 and the feed rate of 0.75 mL/s. The analyses were performed by UV-Vis spectroscopy using the colourimetric method of 1.5-diphenylcarbazide. The material was characterized by infrared spectrometry by Fourier Transforms (FTIR), from this analysis, it was determined that the OH and NH2 functional groups are the main responsible for the formation of complexes with the cations in solution. Also, it was established that only the particle size is statistically significant. According to the response surface analysis, the optimum conditions of the process were 353.15 K, a particle size of 0.819 mm and a bed height of 67.768 mm. From the thermodynamic study of the process, it is established that it is endothermic and the chemical adsorption prevails in it. The results obtained in the process modelling suggest that Dose-Response can be used reliably to scale the process.


2012 ◽  
Vol 512-515 ◽  
pp. 1615-1618
Author(s):  
Jian Zhang ◽  
Xuan Jun Wang

Effects of mole rate of methanol/oil, reaction time and technology on the free fatty acid ( FFA) level decrease of Zanthoxylum bungeanum seed oil with sulfuric acid as catalyst was investigated. Results show that, the acid level decreases with the mole rate of methanol/oil increases when the sulfuric acid is 2% based on the weight of Zanthoxylum bungeanum seed oil and reacting at 60°C for 2h. When the mole rate is 20~35∶1, the final acid value is less than 2mgKOH/g which meets the requirement for biodiesel production. When the mole rate is 25∶1, with sulfuric acid dosage 2% and reacting at 60°C, the acid value decreases fast at the beginning of the acid esterification. The acid value of ZSO was reduced to 1.56 mg KOH/g from 78.91 mg KOH/g by only one-step acid-catalyzed esterification with methanol-to-oil molar ratio 30:1, H2SO4 2%, temperature 60°C and reaction time 60 min, which was selected as optimum for the acid-catalyzed esterification.


2017 ◽  
Vol 743 ◽  
pp. 355-359
Author(s):  
Svetlana A. Popova ◽  
Irina Yu. Chukicheva

[bnmim]HSO4 and [bnpy]HSO4 are active and environmentally friendly catalysts for the acetylation of camphene with acetic acid. The reaction provides isobornyl acetate with 100% selectivity and 72-86% yield. The effect of temperature, molar ratio camphene/acetic acid, and catalyst loading were investigated. The catalyst can be reused four times without loss of activity. Isobornyl acetate is an important fine chemical and has been used in the field of fragrance, medicine, organic synthesis and cosmetics [1]. It is an intermediary in the synthesis of camphor [2]. Usually it is prepared by an acid-catalized reaction of camphene with acetic acid or acetic anhydride. But this process has serious drawbacks such as the corrosion of equipment, non-recyclability of the catalyst and serious environmental pollution. In the face of increasing environmental requirements, the use of such catalysts becomes unacceptable. Therefore many studies have recently focused on the development of "clean" (green) processes for the production of terpene derivatives with high selectivity. For this purpose, heteropolyacids [3, 4], zeolites [5, 6], solid acid catalysts [7, 8], ion-exchange resin [9-11] were used as catalysts for synthesizing terpene esters. However, these catalysts have drawbacks such as a large ratio of catalyst/substrate, fast deactivation and a selectivity that leaves much to be desired. In the recent years ionic liquids (IL) have been investigated by many researchers as catalysts for different reactions. Due to its low volatility, negligible vapor pressure, reasonable thermal stability, outstanding recyclability and reusability, ionic liquids may be a viable alternative to widely applicable catalysts in the processes of modern synthetic chemistry, the green chemistry [12]. The improvement of the versatility of ionic liquids was achieved by creating acidic functionalized ionic liquids and combining the properties of a reagent and solvent [13]. A number of such ionic liquids were synthesized and successfully applied in the esterification reaction [14-17]. Received that the structure of the IL cation determines the direction of the rearrangement of terpene, whereas the nature of the anion affects the selectivity of the reaction [18, 19]. In the present work, we report the acetylation of camphene with acetic acid catalyzed by imidazolium and pyridinium ionic liquids (Scheme 1). The influence of various reaction parameters, such as the temperature, the molar ratio of camphene/acetic acid and catalyst loading, on the activity of the most active catalyst is also studied.


2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


1986 ◽  
Vol 51 (6) ◽  
pp. 1222-1239 ◽  
Author(s):  
Pavel Moravec ◽  
Vladimír Staněk

Expression have been derived in the paper for all four possible transfer functions between the inlet and the outlet gas and liquid steams under the counter-current absorption of a poorly soluble gas in a packed bed column. The transfer functions have been derived for the axially dispersed model with stagnant zone in the liquid phase and the axially dispersed model for the gas phase with interfacial transport of a gaseous component (PDE - AD). calculations with practical values of parameters suggest that only two of these transfer functions are applicable for experimental data evaluation.


1982 ◽  
Vol 47 (10) ◽  
pp. 2639-2653 ◽  
Author(s):  
Pavel Moravec ◽  
Vladimír Staněk

Expressions have been derived for four possible transfer functions of a model of physical absorption of a poorly soluble gas in a packed bed column. The model has been based on axially dispersed flow of gas, plug flow of liquid through stagnant and dynamic regions and interfacial transport of the absorbed component. The obtained transfer functions have been transformed into the frequency domain and their amplitude ratios and phase lags have been evaluated using the complex arithmetic feature of the EC-1033 computer. Two of the derived transfer functions have been found directly applicable for processing of experimental data. Of the remaining two one is useable with the limitations to absorption on a shallow layer of packing, the other is entirely worthless for the case of poorly soluble gases.


1987 ◽  
Vol 52 (7) ◽  
pp. 1715-1729 ◽  
Author(s):  
Pavel Moravec ◽  
Vladimír Staněk

An experimental method and technique are described in the paper of simultaneous detection of the transfer functions outlet-gas-stream-to-inlet-gas-stream and outlet-liquid-stream-to-inlet-gas-stream for the absorption of oxygen into water in a counter-current packed bed column. Both transfer functions were simultaneously monitored by means of three oxygen electrodes operating on the polarographic principle. The signals of these electrodes were processed in three steps to yield parameters of the model of physical absorption of gas. The first step was on-line evaluation of the Fourier coefficients of the principal harmonic component in all three monitored streams. The second step was the calculation of the frequency characteristics of both transfer functions while the third step yielded parameters of the model by optimization in the frequency domain. The method permits simultaneous evaluation of the parameters of the flow of both phases in the column and the interfacial transfer of oxygen.


Sign in / Sign up

Export Citation Format

Share Document