scholarly journals THE ANTIBACTERIAL POTENTIAL OF ESSENTIAL OILS ON PROPIONIBACTERIUM GRANULOSUM STRAINS

2020 ◽  
Vol 12 (2) ◽  
pp. 21-24
Author(s):  
Daniela Maria Șandru ◽  
◽  
Magda Panaitescu ◽  

Gram-positive bacteria Propionibacterium granulosum lives on human skin along with other propionibacteria on the skin, these bacteria are especially important to have healthy skin and occupy some ecological niches. These niches are populated by some pathogenic bacteria. Propionibacterium granulosum bacteria produce some fatty acids that have low molecular weight, bacteriocins and other substances that inhibit some bacteria. The aim of this research is to investigate the microbiological evolution of some essential oils on Propionibacterium granulosum strains. It is observed that the highest values are recorded when 20 µL of essential oil is used.

2018 ◽  
Vol 49 (1) ◽  
pp. 46-52 ◽  
Author(s):  
M. Božik ◽  
P. Hovorková ◽  
P. Klouček

AbstractEssential oils play a prominent role as flavouring agents and fragrances in the food and perfume industries. Carvacrol is a major component of various essential oils, such as oregano and thyme oils, and is responsible for their antimicrobial activity. Lauric acid is a medium-chain fatty acid (MCFA) with a high antibacterial potential. Both carvacrol and MCFAs have been used empirically as antimicrobial agents. Here, we tested the inhibitory properties of carvacrol and coconut (Cocos nuciferaL.) oil containing a high percentage of MCFAs against 5 harmful bacterial pathogens:Escherichia coli, SalmonellaEnteritidis,Staphylococcus aureus, Listeria monocytogenes, andEnterococcus cecorum. Gas chromatography (GC-FID) analysis of coconut oil showed a high concentration of lauric acid (41%). Microdilution antimicrobial assays showed that the combination of carvacrol and coconut oil had a stronger antibacterial effect against all tested bacteria than both agents separately. We conclude that carvacrol could significantly improve the antibacterial effect of coconut oil.


1992 ◽  
Vol 75 (5) ◽  
pp. 854-857 ◽  
Author(s):  
Lucas Dominguez ◽  
Jose L Blanco ◽  
Miguel A Moreno ◽  
Susana D Diaz ◽  
Javier Prieta ◽  
...  

Abstract A new membrane technique is described for the extraction of low molecular weight organic compounds from a wide range of substrates. With this system, the organic compounds of interest contained in the sample pass through the membrane toward the organic solvent, while other substances of higher molecular weight are excluded by the membrane. This procedure allows the extraction or the elimination of toxic substances with a yield of 90%.


2017 ◽  
Vol 60 (3) ◽  
Author(s):  
Dayane Silva Rocha ◽  
Janete Magali Da Silva ◽  
Daniela Maria Do Amaral Ferraz Navarro ◽  
Claúdio Augusto Gomes Camara ◽  
Camila Soledade De Lira ◽  
...  

The essential oils from leaves, stems and roots of Piper caldense were analyzed by GC-MS. The antibacterial potential of the oils was evaluated against gram-negative bacteria and gram-positive bacteria. The major chemical constituents that were identified from various parts of this plant were α-cardinal, α-muurolol, tujopsan-2-β-ol and δ-cadiene in the leaves, valencene, pentadecane, elina-3,7-11-dieno α-terpineol in the roots and terpine-4-ol, α-terpineol, α-cadinol 2-β-ol in the stems. Tissue oils showed antibacterial activity against the bacteria tested except for Enterococcus faecalis. This is the first report of the biological activity and chemical composition essential oil of P. caldense.


2011 ◽  
Vol 50 (31) ◽  
pp. 7101-7104 ◽  
Author(s):  
Sunil V. Sharma ◽  
Vishnu K. Jothivasan ◽  
Gerald L. Newton ◽  
Heather Upton ◽  
Judy I. Wakabayashi ◽  
...  

Author(s):  
Mahmoud Osanloo ◽  
Abbas Abdollahi ◽  
Alireza Valizadeh ◽  
Niloufar Abedinpour

Background and Objectives: Plant-derived essential oils (EOs) shave many usages in health and medicine, such as anti- bacterial agents. The aim of this study was the improvement of antibacterial activities of two EOs using nanotechnology. Materials and Methods: Antibacterial activity was investigated on four important human pathogenic bacteria using the 96-well plate microdilution method, a quantitative approach. Eleven formulations were prepared using each of the EOs. Eventually, the best nanoformulation with the smallest particle size and polydispersive indices (PDI and SPAN) was selected using each EO for further investigations. Moreover, two microemulsions with similar ingredients and the same portion in comparison with two selected nanoemulsions were also prepared. Antibacterial activity of each EO was compared with its micro- and nano-emulsions. Results: The antibacterial efficacy of Zataria multiflora EO (ZMEO) was significantly better than Mentha piperita EO (MPEO). Besides, the antibacterial activity of nanoemulsion of ZMEO with a particle size of 129 ± 12 nm was significantly better than no- and micro-formulated forms of ZMEO. Interestingly, the efficiency of MPEO nanoemulsion (160 ± 25 nm) was also significantly better than MPEO and its micro-formulated form. Conclusion: Regardless of the intrinsic antibacterial property of two examined EOs, by formulating to nanoemulsion, their efficiencies were improved. Nanoemulsion of ZMEO introduced as an inexpensive, potent and green antibacterial agent.


2020 ◽  
Vol 27 (26) ◽  
pp. 4297-4343 ◽  
Author(s):  
Franko Burčul ◽  
Ivica Blažević ◽  
Mila Radan ◽  
Olivera Politeo

: Essential oils constituents are a diverse family of low molecular weight organic compounds with comprehensive biological activity. According to their chemical structure, these active compounds can be divided into four major groups: terpenes, terpenoids, phenylpropenes, and "others". In addition, they may contain diverse functional groups according to which they can be classified as hydrocarbons (monoterpenes, sesquiterpenes, and aliphatic hydrocarbons); oxygenated compounds (monoterpene and sesquiterpene alcohols, aldehydes, ketones, esters, and other oxygenated compounds); and sulfur and/or nitrogen containing compounds (thioesters, sulfides, isothiocyanates, nitriles, and others). : Compounds that act as cholinesterase inhibitors still represent the only pharmacological treatment of Alzheimer´s disease. Numerous in vitro studies showed that some compounds, found in essential oils, have a promising cholinesterase inhibitory activity, such as α-pinene, δ-3-carene, 1,8-cineole, carvacrol, thymohydroquinone, α- and β-asarone, anethole, etc. : Essential oils constituents are a diverse family of low molecular weight organic compounds with comprehensive biological activity. According to their chemical structure, these active compounds can be divided into four major groups: terpenes, terpenoids, phenylpropenes, and "others". In addition, they may contain diverse functional groups according to which they can be classified as hydrocarbons (monoterpenes, sesquiterpenes, and aliphatic hydrocarbons); oxygenated compounds (monoterpene and sesquiterpene alcohols, aldehydes, ketones, esters, and other oxygenated compounds); and sulfur and/or nitrogen containing compounds (thioesters, sulfides, isothiocyanates, nitriles, and others).


2021 ◽  
Vol 12 ◽  
Author(s):  
Nasim Khorshidian ◽  
Elham Khanniri ◽  
Mehrdad Mohammadi ◽  
Amir M. Mortazavian ◽  
Mojtaba Yousefi

One of the most important challenges in the food industry is to produce healthy and safe food products, and this could be achieved through various processes as well as the use of different additives, especially chemical preservatives. However, consumer awareness and concern about chemical preservatives have led researchers to focus on the use of natural antimicrobial compounds such as bacteriocins. Pediocins, which belong to subclass IIa of bacteriocin characterized as small unmodified peptides with a low molecular weight (2.7–17 kDa), are produced by some of the Pediococcus bacteria. Pediocin and pediocin-like bacteriocins exert a broad spectrum of antimicrobial activity against Gram-positive bacteria, especially against pathogenic bacteria, such as Listeria monocytogenes through formation of pores in the cytoplasmic membrane and cell membrane dysfunction. Pediocins are sensitive to most protease enzymes such as papain, pepsin, and trypsin; however, they keep their antimicrobial activity during heat treatment, at low temperatures even at −80°C, and after treatment with lipase, lysozyme, phospholipase C, DNase, or RNase. Due to the anti-listeria activity of pediocin on the one hand and the potential health hazards associated with consumption of meat products on the other hand, this review aimed to investigate the possible application of pediocin in preservation of meat and meat products against L. monocytogenes.


1990 ◽  
Vol 36 (2) ◽  
pp. 123-130 ◽  
Author(s):  
M. Parrot ◽  
P. W. Caufield ◽  
M. C. Lavoie

The various properties of the inhibitory substances produced by Streptococcus mutans strains C67-1, Ny257-S, Ny266, and T8, and the fact that inhibitory zones produced could not be associated with lactic acid (or other organic acids), bacteriophages, or hydrogen peroxide indicate that these substances can be classified as mutacins. The substances produced by strains C67-1, Ny266, and T8 possessed similar properties. They were shown to be thermoresistant (100 °C, 30 min), low molecular weight (< 3500) substances sensitive to proteolytic enzymes (chymotrypsin, papain, pronase E, proteinase K, and trypsin) and they were active against most of the Gram-positive bacteria tested but not against most of the Gram-negative bacteria. The substance produced by strain Ny257-S differs from the other three by its narrower activity spectrum, its lower thermoresistance (80 °C, 30 min), and its higher molecular weight (8 000–14 000). The gene or the genes coding for the mutacins are probably located on the chromosome since no plasmid DNA could be detected in these four producing strains. Restriction-fragment patterns of C67-1 and T8 suggest that these strains are closely related, as supported by the strong similarity observed between the properties of their mutacins. Key words: bacteriocin, mutacin, Streptococcus mutans, inhibitory substance.


2011 ◽  
Vol 123 (31) ◽  
pp. 7239-7242 ◽  
Author(s):  
Sunil V. Sharma ◽  
Vishnu K. Jothivasan ◽  
Gerald L. Newton ◽  
Heather Upton ◽  
Judy I. Wakabayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document