scholarly journals Characterization of solid product obtained via chemical degradation process of low grade lignite and waste tyre

2017 ◽  
Vol 23 (6) ◽  
pp. 773-779
Author(s):  
Çağlayan Açıkgöz ◽  
Şenay Balbay
1995 ◽  
Vol 74 (02) ◽  
pp. 673-679 ◽  
Author(s):  
C E Dempfle ◽  
S A Pfitzner ◽  
M Dollman ◽  
K Huck ◽  
G Stehle ◽  
...  

SummaryVarious assays have been developed for quantitation of soluble fibrin or fibrin monomer in clinical plasma samples, since this parameter directly reflects in vivo thrombin action on fibrinogen. Using plasma samples from healthy blood donors, patients with cerebral ischemic insult, patients with septicemia, and patients with venous thrombosis, we compared two immunologic tests using monoclonal antibodies against fibrin-specific neo-epitopes, and two functional tests based on the cofactor activity of soluble fibrin complexes in tPA-induced plasminogen activation. Test A (Enzymun®-Test FM) showed the best discriminating power among normal range and pathological samples. Test B (Fibrinostika® soluble fibrin) clearly separated normal range from pathological samples, but failed to discriminate among samples from patients with low grade coagulation activation in septicemia, and massive activation in venous thrombosis. Functional test C (Fibrin monomer test Behring) displayed good discriminating power between normal and pathological range samples, and correlated with test A (r = 0.61), whereas assay D (Coa-Set® Fibrin monomer) showed little discriminating power at values below 10 μg/ml and little correlation with other assays. Standardization of assays will require further characterization of analytes detected.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Andreas Lindhorst ◽  
Nora Raulien ◽  
Peter Wieghofer ◽  
Jens Eilers ◽  
Fabio M. V. Rossi ◽  
...  

AbstractA chronic low-grade inflammation within adipose tissue (AT) seems to be the link between obesity and some of its associated diseases. One hallmark of this AT inflammation is the accumulation of AT macrophages (ATMs) around dead or dying adipocytes, forming so-called crown-like structures (CLS). To investigate the dynamics of CLS and their direct impact on the activation state of ATMs, we established a laser injury model to deplete individual adipocytes in living AT from double reporter mice (GFP-labeled ATMs and tdTomato-labeled adipocytes). Hence, we were able to detect early ATM-adipocyte interactions by live imaging and to determine a precise timeline for CLS formation after adipocyte death. Further, our data indicate metabolic activation and increased lipid metabolism in ATMs upon forming CLS. Most importantly, adipocyte death, even in lean animals under homeostatic conditions, leads to a locally confined inflammation, which is in sharp contrast to other tissues. We identified cell size as cause for the described pro-inflammatory response, as the size of adipocytes is above a critical threshold size for efferocytosis, a process for anti-inflammatory removal of dead cells during tissue homeostasis. Finally, experiments on parabiotic mice verified that adipocyte death leads to a pro-inflammatory response of resident ATMs in vivo, without significant recruitment of blood monocytes. Our data indicate that adipocyte death triggers a unique degradation process and locally induces a metabolically activated ATM phenotype that is globally observed with obesity.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1513
Author(s):  
Yuezhou Wei ◽  
Khalid A. M. Salih ◽  
Mohammed F. Hamza ◽  
Toyohisa Fujita ◽  
Enrique Rodríguez-Castellón ◽  
...  

High-tech applications require increasing amounts of rare earth elements (REE). Their recovery from low-grade minerals and their recycling from secondary sources (as waste materials) are of critical importance. There is increasing attention paid to the development of new sorbents for REE recovery from dilute solutions. A new generation of composite sorbents based on brown algal biomass (alginate) and polyethylenimine (PEI) was recently developed (ALPEI hydrogel beads). The phosphorylation of the beads strongly improves the affinity of the sorbents for REEs (such as La and Tb): by 4.5 to 6.9 times compared with raw beads. The synthesis procedure (epicholorhydrin-activation, phosphorylation and de-esterification) is investigated by XPS and FTIR for characterizing the grafting route but also for interpreting the binding mechanism (contribution of N-bearing from PEI, O-bearing from alginate and P-bearing groups). Metal ions can be readily eluted using an acidic calcium chloride solution, which regenerates the sorbent: the FTIR spectra are hardly changed after five successive cycles of sorption and desorption. The materials are also characterized by elemental, textural and thermogravimetric analyses. The phosphorylation of ALPEI beads by this new method opens promising perspectives for the recovery of these strategic metals from mild acid solutions (i.e., pH ~ 4).


2020 ◽  
Vol 1000 ◽  
pp. 436-446
Author(s):  
Bambang Suharno ◽  
Nolzha Primadha Ilman ◽  
Achmad Shofi ◽  
Deni Ferdian ◽  
Fajar Nurjaman

This study was conducted to investigate the effect of palm shell charcoal reductant in the selective reduction of nickel ore with the addition of additive at various temperatures and times. In this present work, 10 wt. % of sodium sulfate as additive and 5, 10, 15 wt. % of palm shell charcoal as reductants were used. The reduction of nickel ore was performed at 950oC, 1050oC, and 1150oC for 60, 90, and 120 minutes. A wet magnetic separation method was then carried out to separate the concentrates and tailings. Characterization of reduced ore was performed by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), while the composition of ferronickel in concentrate was identified by X-Ray Fluorescence (XRF). The result showed that the higher temperature reduction, the higher of nickel grade, and its recovery at the concentrate. Nevertheless, the longer reduction time and the more reductant in nickel ore lowering the nickel grade and its recovery in the concentrate. The optimum condition in this selective reduction process was obtained with the addition of 5 wt. % of reductant and 10 wt. % of sodium sulfate in nickel ore, which was reduced at 1150oC for 60 minutes. It resulted in 4.60% and 73.23% for nickel grade and its recovery, respectively.


2021 ◽  
Vol 21 (3) ◽  
pp. 651
Author(s):  
Agus Kuncaka ◽  
Rizky Ibnufaatih Arvianto ◽  
Almas Shafira Ramadhanty Bunga Latifa ◽  
Munawir Ramadhan Rambe ◽  
Adhitasari Suratman ◽  
...  

Conversion of feather and blood from chicken slaughterhouse waste for producing solid and liquid organic fertilizer excluding composting process with a variation of the mass ratio of feather and blood of a chicken has been conducted. The nitrogen, sulfur, and iron content in the solid and liquid product of the hydrothermal carbonization process were analyzed to identify and characterize the possibility of hydrolysate as a source of nitrogen, sulfur, and iron in soil fertilizer. Feather and blood of chicken waste were introduced to a hydrothermal carbonization reactor with the addition of limestone at a temperature range of 160–170 °C for the preparation of solid and liquid organic fertilizer. According to the FTIR interpretation, the solid product had functional groups such as NH, OH, CH sp3, SH, C=O, C=C, C–O–C, and C–H aromatic. The nitrogen, sulfur, and iron content of the optimal ratio in the solid phase were 4.67%, 1.63%, and 3694.56 ppm, while their contents in the liquid fertilizer were 3.76%, 1.80%, and 221.56 ppm, respectively. The vibration of 478 cm–1 is attributed to Fe–O paramagnetic (Fe2O3) confirmed by TEM images showed the diameter size less than 20 nm indicating the presence of superparamagnetic material.


2010 ◽  
Vol 81 (2) ◽  
pp. 291-299 ◽  
Author(s):  
Fernanda H.G. Peroni-Okita ◽  
Renata A. Simão ◽  
Mateus B. Cardoso ◽  
Claudinéia A. Soares ◽  
Franco M. Lajolo ◽  
...  

2014 ◽  
Vol 66 (3) ◽  
pp. 763-768 ◽  
Author(s):  
I.L.D. Silva ◽  
A.P.M. Dias ◽  
A.C. Bertagnolli ◽  
G.D. Cassali ◽  
E. Ferreira

Biomolecular evidence has shown that ductal carcinoma in situ(DCIS) may develop into invasive carcinoma of the canine mammary gland, and mutations in proto-oncogenes HER2 and EGFR; two members of the family of epidermal growth factor receptors, may be involved in this process. The purpose of this study was the characterization of the immunohistochemical expression of the EGFR and HER2 proteins in the process of neoplastic transformation, supposedly present in ductal carcinomas in situin canine mammary glands. Fifteen cases of DCIS were evaluated, with a higher expression of HER2 and EGFR being observed in low-grade carcinomas when compared with high-grade neoplasms, and with a high positive statistical correlation in the latter. Results suggest that aggressive tumors tend to lose the expression of EGFR and HER2 simultaneously. The loss of the expression of these markers may be related to the process of neoplastic progression in canine mammary tumors.


2017 ◽  
Author(s):  
Irina M. Velsko ◽  
Katherine A. Overmyer ◽  
Camilla Speller ◽  
Matthew Collins ◽  
Louise Loe ◽  
...  

AbstractIntroductionDental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens.ObjectiveWe present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach.MethodsUltra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including metabolites of drug and dietary origin. A subset of historic samples was additionally analyzed by high-resolution gas chromatography-MS (GC-MS) and UPLC- MS/MS for further characterization of polar metabolites and lipids, respectively. Metabolite profiles of modern and historic calculus were compared to identify patterns of persistence and loss.ResultsDipeptides, free amino acids, free nucleotides, and carbohydrates substantially decrease in abundance and ubiquity in archaeological samples, with some exceptions. Lipids generally persist, and saturated and mono-unsaturated medium and long chain fatty acids appear to be well-preserved, while metabolic derivatives related to oxidation and chemical degradation are found at higher levels in archaeological dental calculus than fresh samples.ConclusionsThe results of this study indicate that certain metabolite classes have higher potential for recovery over long time scales and may serve as appropriate targets for oral microbiome evolutionary studies.


Author(s):  
Stefano Rossi ◽  
Francesca Russo

Porcelain enamel coatings have their origins in ancient times when they were mainly used for decorative and ornamental purposes. From the industrial revolution onwards, these coatings have started to be used also as functional layers, ranging from home applications up to the use in high-technological fields, such as in chemical reactors. The excellent properties of enamel coatings, such as fire resistance, protection of the substrate from corrosion, resistance to atmospheric and chemical degradation, mainly depend and originate from the glassy nature of the enamel matrix itself. On the other side, the vitreous nature of enamel coatings limits their application in many fields, where mechanical stress and heavy abrasion phenomena could lead to nucleation and propagation of cracks inside the material, thus negatively affecting the protective properties of this coating. Many efforts have been made to improve the abrasion resistance of enamelled materials. On this regard, researchers showed encouraging results and proposed many different improvement approaches. Now it is possible to obtain enamels with enhanced resistance to abrasion. Differently, the investigation of the mechanical properties of enamel coatings remains a poorly studied topic. In the literature, there are interesting methodological ideas, which could be successfully applied to the mechanical study of enamelled materials and could allow to have further insights on their behaviour. Thus, the path that should be followed in the future includes the mechanical characterization of these coatings and the search for new solutions to address their brittle behaviour.


2013 ◽  
Vol 34 (2) ◽  
pp. E2 ◽  
Author(s):  
Gavin P. Dunn ◽  
Ovidiu C. Andronesi ◽  
Daniel P. Cahill

The characterization of the genomic alterations across all human cancers is changing the way that malignant disease is defined and treated. This paradigm is extending to glioma, where the discovery of recurrent mutations in the isocitrate dehydrogenase 1 (IDH1) gene has shed new light on the molecular landscape in glioma and other IDH-mutant cancers. The IDH1 mutations are present in the vast majority of low-grade gliomas and secondary glioblastomas. Rapidly emerging work on the consequences of mutant IDH1 protein expression suggests that its neomorphic enzymatic activity catalyzing the production of the oncometabolite 2-hydroxyglutarate influences a range of cellular programs that affect the epigenome, transcriptional programs, hypoxia-inducible factor biology, and development. In the brief time since its discovery, knowledge of the IDH mutation status has had significant translational implications, and diagnostic tools are being used to monitor its expression and function. The concept of IDH1-mutant versus IDH1-wild type will become a critical early distinction in diagnostic and treatment algorithms.


Sign in / Sign up

Export Citation Format

Share Document