scholarly journals The Feasibility of Opening Communities -- Based on the Wiedemann Car-Following Model

2018 ◽  
Vol 11 (3) ◽  
pp. 57
Author(s):  
Xiao-Yan Cao ◽  
Bing-Qian Liu ◽  
Bao-Ru Pan ◽  
Yuan-Biao Zhang

With the accelerating development of urbanization in China, the increasing traffic demand and large scale gated communities have aggravated urban traffic congestion. This paper studies the impact of communities opening on road network structure and the surrounding road capacity. Firstly, we select four indicators, namely average speed, vehicle flow, average delay time, and queue length, to measure traffic capacity. Secondly, we establish the Wiedemann car-following model, then use VISSIM software to simulate the traffic conditions of surrounding roads of communities. Finally, we take Shenzhen as an example to simulate and compare the four kinds of gated communities, axis, centripetal and intensive layout, and we also analyze the feasibility of opening communities.

2018 ◽  
Vol 32 (32) ◽  
pp. 1850398 ◽  
Author(s):  
Tenglong Li ◽  
Fei Hui ◽  
Xiangmo Zhao

The existing car-following models of connected vehicles commonly lack experimental data as evidence. In this paper, a Gray correlation analysis is conducted to explore the change in driving behavior with safety messages. The data mining analysis shows that the dominant factor of car-following behavior is headway with no safety message, whereas the velocity difference between the leading and following vehicle becomes the dominant factor when warning messages are received. According to this result, an extended car-following model considering the impact of safety messages (IOSM) is proposed based on the full velocity difference (FVD) model. The stability criterion of this new model is then obtained through a linear stability analysis. Finally, numerical simulations are performed to verify the theoretical analysis results. Both analytical and simulation results show that traffic congestion can be suppressed by safety messages. However, the IOSM model is slightly less stable than the FVD model if the average headway in traffic flow is approximately 14–20 m.


2018 ◽  
Vol 32 (21) ◽  
pp. 1850238 ◽  
Author(s):  
Peng Tan ◽  
Di-Hua Sun ◽  
Dong Chen ◽  
Min Zhao ◽  
Tao Chen

In order to reveal the impact of preceding vehicle’s velocity on traffic flow, an extended car-following model considering preceding vehicle’s velocity feedback control is proposed in this paper. The linear stability criterion of the new model is derived through control theory method and it shows that the feedback control signal impacts the stability of traffic flow. Numerical simulation results is in good agreement with the theoretical analysis, which prove that a smaller negative feedback control of the preceding vehicle’s velocity can enhance the stability of traffic flow, while a smaller positive feedback control of the preceding vehicle’s velocity can exacerbate traffic congestion. Moreover, the reaction coefficients of straight and curved road conditions also play an important role in the stability of traffic flow.


2020 ◽  
Vol 12 (12) ◽  
pp. 216
Author(s):  
Junyan Han ◽  
Jinglei Zhang ◽  
Xiaoyuan Wang ◽  
Yaqi Liu ◽  
Quanzheng Wang ◽  
...  

Vehicle-to-everything (V2X) technology will significantly enhance the information perception ability of drivers and assist them in optimizing car-following behavior. Utilizing V2X technology, drivers could obtain motion state information of the front vehicle, non-neighboring front vehicle, and front vehicles in the adjacent lanes (these vehicles are collectively referred to as generalized preceding vehicles in this research). However, understanding of the impact exerted by the above information on car-following behavior and traffic flow is limited. In this paper, a car-following model considering the average velocity of generalized preceding vehicles (GPV) is proposed to explore the impact and then calibrated with the next generation simulation (NGSIM) data utilizing the genetic algorithm. The neutral stability condition of the model is derived via linear stability analysis. Numerical simulation on the starting, braking and disturbance propagation process is implemented to further study features of the established model and traffic flow stability. Research results suggest that the fitting accuracy of the GPV model is 40.497% higher than the full velocity difference (FVD) model. Good agreement between the theoretical analysis and the numerical simulation reveals that motion state information of GPV can stabilize traffic flow of following vehicles and thus alleviate traffic congestion.


Aerospace ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 38
Author(s):  
Malik Doole ◽  
Joost Ellerbroek ◽  
Victor L. Knoop ◽  
Jacco M. Hoekstra

Large-scale adoption of drone-based delivery in urban areas promise societal benefits with respect to emissions and on-ground traffic congestion, as well as potential cost savings for drone-based logistic companies. However, for this to materialise, the ability of accommodating high volumes of drone traffic in an urban airspace is one of the biggest challenges. For unconstrained airspace, it has been shown that traffic alignment and segmentation can be used to mitigate conflict probability. The current study investigates the application of these principles to a highly constrained airspace. We propose two urban airspace concepts, applying road-based analogies of two-way and one-way streets by imposing horizontal structure. Both of the airspace concepts employ heading-altitude rules to vertically segment cruising traffic according to their travel direction. These airspace configurations also feature transition altitudes to accommodate turning flights that need to decrease the flight speed in order to make safe turns at intersections. While using fast-time simulation experiments, the performance of these airspace concepts is compared and evaluated for multiple traffic demand densities in terms of safety, stability, and efficiency. The results reveal that an effective way to structure drone traffic in a constrained urban area is to have vertically segmented altitude layers with respect to travel direction as well as horizontal constraints imposed to the flow of traffic. The study also makes recommendations for areas of future research, which are aimed at supporting dynamic traffic demand patterns.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Tao Wang ◽  
Jing Zhang ◽  
Guangyao Li ◽  
Keyu Xu ◽  
Shubin Li

In the traditional optimal velocity model, safe distance is usually a constant, which, however, is not representative of actual traffic conditions. This paper attempts to study the impact of dynamic safety distance on vehicular stream through a car-following model. Firstly, a new car-following model is proposed, in which the traditional safety distance is replaced by a dynamic term. Then, the phase diagram in the headway, speed, and sensitivity spaces is given to illustrate the impact of a variable safe distance on traffic flow. Finally, numerical methods are conducted to examine the performance of the proposed model with regard to two aspects: compared with the optimal velocity model, the new model can suppress traffic congestion effectively and, for different safety distances, the dynamic safety distance can improve the stability of vehicular stream. Simulation results suggest that the new model is able to enhance traffic flow stability.


Author(s):  
Tu Xu ◽  
Jorge Laval

This paper analyzes the impact of uphill grades on the acceleration drivers choose to impose on their vehicles. Statistical inference is made based on the maximum likelihood estimation of a two-regime stochastic car-following model using Next Generation SIMulation (NGSIM) data. Previous models assume that the loss in acceleration on uphill grades is given by the effects of gravity. We find evidence that this is not the case for car drivers, who tend to overcome half of the gravitational effects by using more engine power. Truck drivers only compensate for 5% of the loss, possibly because of limited engine power. This indicates not only that current models are severely overestimating the operational impacts that uphill grades have on regular vehicles, but also underestimating their environmental impacts. We also find that car-following model parameters are significantly different among shoulder, median and middle lanes but more data is needed to understand clearly why this happens.


2020 ◽  
Vol 8 (1) ◽  
pp. 150-165
Author(s):  
Tenglong Li ◽  
Dong Ngoduy ◽  
Fei Hui ◽  
Xiangmo Zhao

2020 ◽  
Vol 12 (22) ◽  
pp. 9478
Author(s):  
Neven Grubisic ◽  
Tomislav Krljan ◽  
Livia Maglić ◽  
Siniša Vilke

The growth of container transport places increasing demand on traffic, especially in situations where container terminals are located near the city centers. The main problem is traffic congestion on networks caused by the integration of Heavy-Duty Vehicles and urban traffic flows. The main objective is to identify the critical traffic parameters which cause negative organizational and environmental impacts on the existing and future traffic demand. A micro-level traffic simulation model was implemented for the testing of the proposed framework-based supply, demand, and control layers. The model was generated and calibrated based on the example of a mid-size Container Terminal “Brajdica” and the City of Rijeka, Croatia. The results indicate that the critical parameters are Queue Length on the approach road to the Container Terminal and the Stop Delay on the main city corridor. High values of these parameters cause negative effects on the environment because of increased fuel consumption and the generation of extra pollution. Due to this problem, a sensitivity analysis of the traffic system performance has been conducted, with a decrement of Terminal Gate Time distribution by 10%. After re-running simulations, the results indicate the impact of subsequent variation in Terminal Gate Time on the decrease of critical parameters, fuel consumption, and vehicle pollution.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Shihao Li ◽  
Ting Wang ◽  
Rongjun Cheng ◽  
Hongxia Ge

In this paper, an extended car-following model with consideration of the driver’s desire for smooth driving and the self-stabilizing control in historical velocity data is constructed. Moreover, for better reflecting the reality, we also integrate the velocity uncertainty into the new model to analyze the internal characteristics of traffic flow in situation where the historical velocity data are uncertain. Then, the model’s linear stability condition is inferred by utilizing linear stability analysis, and the modified Korteweg-de Vries (mKdV) equation is also obtained to depict the evolution properties of traffic congestion. According to the theoretical analysis, we observe that the degree of traffic congestion is alleviated when the control signal is considered, and the historical time gap and the velocity uncertainty also play a role in affecting the stability of traffic flow. Finally, some numerical simulation experiments are implemented and the experiments’ results demonstrate that the control signals including the self-stabilizing control, the driver’s desire for smooth driving, the historical time gap, and the velocity uncertainty are of avail to improve the traffic jam, which are consistent with the theoretical analytical results.


Transport ◽  
2018 ◽  
Vol 33 (4) ◽  
pp. 971-980 ◽  
Author(s):  
Michal Maciejewski ◽  
Joschka Bischoff

Fleets of shared Autonomous Vehicles (AVs) could replace private cars by providing a taxi-like service but at a cost similar to driving a private car. On the one hand, large Autonomous Taxi (AT) fleets may result in increased road capacity and lower demand for parking spaces. On the other hand, an increase in vehicle trips is very likely, as travelling becomes more convenient and affordable, and additionally, ATs need to drive unoccupied between requests. This study evaluates the impact of a city-wide introduction of ATs on traffic congestion. The analysis is based on a multi-agent transport simulation (MATSim) of Berlin (Germany) and the neighbouring Brandenburg area. The central focus is on precise simulation of both real-time AT operation and mixed autonomous/conventional vehicle traffic flow. Different ratios of replacing private car trips with AT trips are used to estimate the possible effects at different stages of introducing such services. The obtained results suggest that large fleets operating in cities may have a positive effect on traffic if road capacity increases according to current predictions. ATs will practically eliminate traffic congestion, even in the city centre, despite the increase in traffic volume. However, given no flow capacity improvement, such services cannot be introduced on a large scale, since the induced additional traffic volume will intensify today’s congestion.


Sign in / Sign up

Export Citation Format

Share Document