scholarly journals Agronomic Performance of Millet Plants Grown in Soil Fertilized With Organic Wastes

2019 ◽  
Vol 11 (11) ◽  
pp. 137
Author(s):  
Wilker A. Morais ◽  
Frederico A. L. Soares ◽  
Fernando N. Cunha ◽  
Marconi B. Teixeira ◽  
Cicero T. S. Costa ◽  
...  

Information on the potential of organic matter for soil fertility is important to an efficiently replenishment of nutrients. In this context, the objective of this work was to evaluate the agronomic performance of millet plants grown in soil fertilized with different rates of organic wastes, through biometric variables. A randomized block experimental design with a 4 × 2 factorial arrangement was used with four replications, consisting of 32 experimental units. The treatments consisted of four organic matter sources (swine manure, sewage sludge, bovine manure, and poultry litter), and two organic matter rates (10 and 20 dm3); 50 dm3 pots filled with an agricultural soil that is predominant in the region were used. The pots were filled with 80% of soil and 20% of organic matter (10 dm3); and with 60% of soil and 40% of organic matter (20 dm3). Plant height (PH), leaf area (LA), stem diameter (SD), and number of expanded leaves (NL) were evaluated at 20, 40, 60, and 80 days after sowing (DAS); panicle length (PNL), and panicle diameter (PD) were measured at 80 DAS. All biometric variables evaluated indicated that the better organic matter rate for soil fertilization for millet crops is 10 dm3. In general, the highest panicle lengths and diameters were found in plants grown in soil with bovine manure.

2012 ◽  
Vol 32 (2) ◽  
pp. 405-414 ◽  
Author(s):  
Adriane de A. Silva ◽  
Adriana M. da Costa ◽  
Regina M. Q. Lana ◽  
Ângela M. Q. Lana

The utilization of organic wastes represents an alternative to recover degraded pasture. The experiment aimed to assess the changes caused by the provision of different organic waste (poultry litter, turkey litter and pig manure) in a medium-textured Oxisol in Brazilian Savanna under degraded pasture. It was applied different doses of waste compared to the use of mineral fertilizers and organic mineral and evaluated the effect on soil parameters (pH, organic matter, phosphorus and potassium) and leaf of Brachiariadecumbens (crude protein, phosphorus and dry mass production). It was observed that application of organic waste did not increase the level of soil organic matter and pH in the surface layer, and the application of turkey litter caused acidification at depths of 0.20-0.40 m and 0.40-0.60 m. There was an increase in P and K in the soil with the application of poultry litter and swine manure. All organic wastes increased the productivity of dry matter and crude protein and phosphorus. The recycling of nutrients via the application of organic waste allows efficiency of most parameters similar to those observed with the use of mineral sources, contributing to improving the nutritional status of soil-plantsystem.


2019 ◽  
Vol 11 (4) ◽  
pp. 325
Author(s):  
Wilker A. Morais ◽  
Frederico A. L. Soares ◽  
Fernando N. Cunha ◽  
Marconi B. Teixeira ◽  
Cicero T. S. Costa ◽  
...  

The losses of essential elements to crops make necessary to correct soil fertility to meet the nutritional requirements of plants, which can be achieved by increasing soil organic matter. The objective of this work was to evaluate the leaf nutritional conditions of millet plants grown in soils fertilized with organic wastes from different sources at different rates. Organic matter can make the soil more productive and suitable to agricultural crops. A randomized block experimental design with a 4 × 2 factorial arrangement was used with four replications, consisting of 32 experimental units. The treatments consisted of four organic matter sources (swine manure, sewage sludge, bovine manure, and poultry litter), and two organic matter rates (20% and 40% of the pot volume). Boron extraction was performed by dry digestion—the organic matter of the plant tissue was incinerated in an electric muffle furnace at 450-550 ºC, and the inorganic residue (ash) was dissolved in a dilute acid solution. N, K, Ca, Mg, S, Fe, Cu, Mn, and Zn was extracted through wet digestion—the organic matter of the leaf tissue was oxidized by concentrated mineral acids and by heat. N, P, S, B, Ca, Mg, Cu, Fe, Mn, and Zn was determined by spectrophotometry. K was determined by flame photometry. All macro and micronutrient contents in the millet leaves, and biometric parameters of the millet panicle were affected by the organic matter sources, organic matter rates, and the interaction between them.


2015 ◽  
Vol 40 ◽  
pp. 44-52 ◽  
Author(s):  
Paula Alvarenga ◽  
Clarisse Mourinha ◽  
Márcia Farto ◽  
Teresa Santos ◽  
Patrícia Palma ◽  
...  

2019 ◽  
Vol 18 (5) ◽  
pp. 1049-1055
Author(s):  
Antonio Matos ◽  
Isabela Diniz ◽  
Mateus Matos ◽  
Alisson Borges ◽  
Adriana Wilken

2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3411
Author(s):  
Clara Fernando-Foncillas ◽  
Maria M. Estevez ◽  
Hinrich Uellendahl ◽  
Cristiano Varrone

Wastewater and sewage sludge contain organic matter that can be valorized through conversion into energy and/or green chemicals. Moreover, resource recovery from these wastes has become the new focus of wastewater management, to develop more sustainable processes in a circular economy approach. The aim of this review was to analyze current sewage sludge management systems in Scandinavia with respect to resource recovery, in combination with other organic wastes. As anaerobic digestion (AD) was found to be the common sludge treatment approach in Scandinavia, different available organic municipal and industrial wastes were identified and compared, to evaluate the potential for expanding the resource recovery by anaerobic co-digestion. Additionally, a full-scale case study of co-digestion, as strategy for optimization of the anaerobic digestion treatment, was presented for each country, together with advanced biorefinery approaches to wastewater treatment and resource recovery.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 628
Author(s):  
Hassan E. Abd Elsalam ◽  
Mohamed E. El- Sharnouby ◽  
Abdallah E. Mohamed ◽  
Bassem M. Raafat ◽  
Eman H. El-Gamal

Sewage sludge is an effective fertilizer in many soil types. When applied as an amendment, sludge introduces, in addition to organic matter, plant nutrients into the soil. When applied for cropland as a fertilizer, the mass loading of sewage sludge is customarily determined by inputs of N and/or P required to support optimal plant growth and a successful harvest. This study aims to examine the changes in organic matter contents and nitrogen forms in sludge-amended soils, as well as the growth of corn and faba bean plants. The main results indicated that there were higher responses to the corn and faba bean yields when sludge was added. Levels of organic carbon in soil were higher after maize harvest and decreased significantly after harvesting of beans, and were higher in sludge amended soils than unmodified soils, indicating the residual effect of sludge in soil. NO3−-N concentrations were generally higher in the soil after maize harvest than during the plant growth period, but this trend was not apparent in bean soil. The amounts of NH4+-N were close in the soil during the growth period or after the maize harvest, while they were higher in the soil after the bean harvest than they were during the growth period. Total nitrogen amounts were statistically higher in the soil during the growth period than those collected after the corn harvest, while they were approximately close in the bean soil. The total nitrogen amount in corn and bean leaves increased significantly in plants grown on modified sludge soil. There were no significant differences in the total nitrogen levels of the maize and beans planted on the treated soil.


Sign in / Sign up

Export Citation Format

Share Document