scholarly journals Comprehensive Meta-Analysis of Maize QTLs Associated With Grain Yield, Flowering Date and Plant Height Under Drought Conditions

2019 ◽  
Vol 11 (8) ◽  
pp. 1 ◽  
Author(s):  
Songtao Liu ◽  
Tinashe Zenda ◽  
Xuan Wang ◽  
Guo Liu ◽  
Hongyu Jin ◽  
...  

Drought remains the primary abiotic constraint to maize (Zea mays L.) productivity globally. Maize drought response involves several regulatory quantitative traits and complex gene networks. Therefore, precise location of drought-related quantitative trait loci (QTL) is imperative for drought tolerance breeding. Despite numerous studies identifying several drought-related maize QTLs, some QTL from particular genetic backgrounds showed smaller effects or could not be identified at all in different backgrounds, affected by marker sets, experimental design, mapping populations and statistical methods. Herein, therefore; using 457 published maize QTLs conferring for 18 traits, we have performed meta-analysis of data from various experiments to obtain meta-QTL (MQTL), integrate these fruitful QTL and to mine candidate genes related to drought. Resultantly, 24 MQTL with confidence interval (CI) < 5 cm were identified to be hot regions. Additionally, 47 drought related gene loci were observed and several candidate genes of the hot MQTL were reorganized by bioinformatics techniques. Thirteen gene (sod4, taf1, rps1, nthr3, oc13, bas, apx1, asn4, pck2, nac1, gst2, ao1 and kch4) loci of hot MQTL regions were homologous to their corresponding gene sequences from the PlantGDB database (http://www.plantgdb.org/search/). Further, we used a comparative genomics approach to identify the homologous regions of MQTL in rice (Oryza sativa Japonica) database (http://www.gramene.org) and observed that drought-related rice gene ATG6 was homologous to maize candidate genes GRMZM2G027857_T01 and GRMZM2G027857_T02. Conclusively, our identified MQTLs with narrowed CI could be useful for marker-assisted selection and the candidate genes harnessed for maize drought tolerance breeding.

2011 ◽  
Vol 38 (4) ◽  
pp. 261 ◽  
Author(s):  
Krishna S. V. Jagadish ◽  
Jill E. Cairns ◽  
Arvind Kumar ◽  
Impa M. Somayanda ◽  
Peter Q. Craufurd

Drought affected rice areas are predicted to double by the end of this century, demanding greater tolerance in widely adapted mega-varieties. Progress on incorporating better drought tolerance has been slow due to lack of appropriate phenotyping protocols. Furthermore, existing protocols do not consider the effect of drought and heat interactions, especially during the critical flowering stage, which could lead to false conclusion about drought tolerance. Screening germplasm and mapping-populations to identify quantitative trait loci (QTL)/candidate genes for drought tolerance is usually conducted in hot dry seasons where water supply can be controlled. Hence, results from dry season drought screening in the field could be confounded by heat stress, either directly on heat sensitive processes such as pollination or indirectly by raising tissue temperature through reducing transpirational cooling under water deficit conditions. Drought-tolerant entries or drought-responsive candidate genes/QTL identified from germplasm highly susceptible to heat stress during anthesis/flowering have to be interpreted with caution. During drought screening, germplasm tolerant to water stress but highly susceptible to heat stress has to be excluded during dry and hot season screening. Responses to drought and heat stress in rice are compared and results from field and controlled environment experiments studying drought and heat tolerance and their interaction are discussed.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 604
Author(s):  
Paolo Vitale ◽  
Fabio Fania ◽  
Salvatore Esposito ◽  
Ivano Pecorella ◽  
Nicola Pecchioni ◽  
...  

Traits such as plant height (PH), juvenile growth habit (GH), heading date (HD), and tiller number are important for both increasing yield potential and improving crop adaptation to climate change. In the present study, these traits were investigated by using the same bi-parental population at early (F2 and F2-derived F3 families) and late (F6 and F7, recombinant inbred lines, RILs) generations to detect quantitative trait loci (QTLs) and search for candidate genes. A total of 176 and 178 lines were genotyped by the wheat Illumina 25K Infinium SNP array. The two genetic maps spanned 2486.97 cM and 3732.84 cM in length, for the F2 and RILs, respectively. QTLs explaining the highest phenotypic variation were found on chromosomes 2B, 2D, 5A, and 7D for HD and GH, whereas those for PH were found on chromosomes 4B and 4D. Several QTL detected in the early generations (i.e., PH and tiller number) were not detected in the late generations as they were due to dominance effects. Some of the identified QTLs co-mapped to well-known adaptive genes (i.e., Ppd-1, Vrn-1, and Rht-1). Other putative candidate genes were identified for each trait, of which PINE1 and PIF4 may be considered new for GH and TTN in wheat. The use of a large F2 mapping population combined with NGS-based genotyping techniques could improve map resolution and allow closer QTL tagging.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shenping Zhou ◽  
Rongrong Ding ◽  
Fanming Meng ◽  
Xingwang Wang ◽  
Zhanwei Zhuang ◽  
...  

Abstract Background Average daily gain (ADG) and lean meat percentage (LMP) are the main production performance indicators of pigs. Nevertheless, the genetic architecture of ADG and LMP is still elusive. Here, we conducted genome-wide association studies (GWAS) and meta-analysis for ADG and LMP in 3770 American and 2090 Canadian Duroc pigs. Results In the American Duroc pigs, one novel pleiotropic quantitative trait locus (QTL) on Sus scrofa chromosome 1 (SSC1) was identified to be associated with ADG and LMP, which spans 2.53 Mb (from 159.66 to 162.19 Mb). In the Canadian Duroc pigs, two novel QTLs on SSC1 were detected for LMP, which were situated in 3.86 Mb (from 157.99 to 161.85 Mb) and 555 kb (from 37.63 to 38.19 Mb) regions. The meta-analysis identified ten and 20 additional SNPs for ADG and LMP, respectively. Finally, four genes (PHLPP1, STC1, DYRK1B, and PIK3C2A) were detected to be associated with ADG and/or LMP. Further bioinformatics analysis showed that the candidate genes for ADG are mainly involved in bone growth and development, whereas the candidate genes for LMP mainly participated in adipose tissue and muscle tissue growth and development. Conclusions We performed GWAS and meta-analysis for ADG and LMP based on a large sample size consisting of two Duroc pig populations. One pleiotropic QTL that shared a 2.19 Mb haplotype block from 159.66 to 161.85 Mb on SSC1 was found to affect ADG and LMP in the two Duroc pig populations. Furthermore, the combination of single-population and meta-analysis of GWAS improved the efficiency of detecting additional SNPs for the analyzed traits. Our results provide new insights into the genetic architecture of ADG and LMP traits in pigs. Moreover, some significant SNPs associated with ADG and/or LMP in this study may be useful for marker-assisted selection in pig breeding.


2001 ◽  
Vol 29 (1-2) ◽  
pp. 77-84
Author(s):  
Nenad Vasić ◽  
Djordje Jocković ◽  
Mile Ivanović ◽  
Luiz Peternelli ◽  
Milisav Stojaković ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document