scholarly journals Directional Selection of Phakopsora pachyrhizi Towards Site-Specific Fungicides in Mato Grosso State

2021 ◽  
Vol 13 (6) ◽  
pp. 100
Author(s):  
Erlei Melo Reis ◽  
Laércio Zambolin ◽  
Wanderlei Dias Guerra

This review focus on the sensitivity reduction of Phakopsora pachyrhizi to site specific fungicides in the Brazilian state of Mato Grosso.The soybean grown area in this state in the 2018/19 growing season was 9,756,668 hectares. The main crop disease is Asian soybean rust that depending on disease severity may cause 80% yield reduction. The rust chemical control started in the 2002/003 season with site-specific fungicides applied solo and with 3.6 sprayings/ha/season. For these reasons, the fungus had sensitivity reduction to the fungicides DMIs, QoIs and SDHIs resulting in a short effective life. Anti-resistance strategies were not adopted to prevent or delay the development of soybean rust resistant population to site-specific fungicides. Reduced sensitivity to the target site has been observed for all site-specific fungicides involving cross and multiple resistance resulting in ineffective control. So far, eight mutations in Phakopsora pachyrhizi have been identified conferring reduced sensitivity to DMIs, QoIs and SDHIs but so far specific mutations are not considered in chemical control. The directional selection has occurred and has been aggravated season-after-season by the continuous use of site-specific fungicides in a large area, for 18 season and with more than three sprayings/area/season. The presence of soybean weed in one million hectares of cotton crop infected by rust aggravates the directional selection. Anti-resistance strategies should include sowing at the beginning of the recommended season, avoid the December season and replacing it by February, use of scientific criteria to time the first application and the use of multisite fungicides in all applications and in the entire area cultivated with soybean.

Plant Disease ◽  
2005 ◽  
Vol 89 (6) ◽  
pp. 675-677 ◽  
Author(s):  
J. T. Yorinori ◽  
W. M. Paiva ◽  
R. D. Frederick ◽  
L. M. Costamilan ◽  
P. F. Bertagnolli ◽  
...  

In 5 March 2001, a severe rust outbreak was recorded at Pitapó, Paraguay, and the causal organism was determined to be Phakopsora pachyrhizi using polymerase chain reaction (PCR) and DNA sequence analysis. In May, rust surveys showed spread throughout most of Paraguay and into western and northern Parana, Brazil. In the 2001-02 season, rust was widespread in Paraguay, but losses were reduced due to severe drought; however, in Brazil it spread to more than 60% of the soybean acreage, causing field losses estimated at 0.1 million metric tons (MMT). In 2003, the disease was observed in more than 90% of the fields in Brazil, and the projected losses in Mato Grosso and Bahia alone are 2.2 MMT (US$487.3 million). Approximately 80% of the soybean acreage in Brazil was sprayed twice with fungicides at the cost of US$544 million. Differences in efficacy have been observed among the commercial strobilurin and triazol fungicides.


2021 ◽  
Vol 13 (6) ◽  
pp. 110
Author(s):  
Erlei Melo Reis ◽  
Wanderlei Dias Guerra ◽  
Mateus Zanatta ◽  
Laércio Zambolim

This review seeks to expand the knowledge about the epidemiology of Asian sybean rust in the state of Mato Grosso and contribute to ensuring the economic sustainability of soybean crop. It is discussed the Phakopsora pachyrhizi potential of dispersal from Asia to South America and finally to Mato Grosso state. The origin of the Asian soybean rust inoculum within Mato Grosso is addressed by the survival in volunteer and soybean weed plants (Pitelli, 2015) in other crops such as cotton. Data on the adverse environmental effect on the soybean plants survival are shown mainly the water deficit from June to August. Reports on the effect air temperature and mainly solar radiation on the mortality of airborne spores during their anemophilous spread on sunny days are also discussed. This increase of knowledge aims to make the soybean-free period more efficient by the knowledge on the soybean plants survival and on the fungus viability in the month of August. Due to the proximity of soybean farms, during the soybean-free period, in other states (Tocantins, Goiás, Rondônia, etc.) and in other neighbor countries we discuss the likelihood that inoculum in the state may also originate in out-of-state crops during the Mato Grosso soybean-free period.


2020 ◽  
Vol 46 (4) ◽  
pp. 345-347
Author(s):  
Erlei Melo Reis ◽  
Mateus Zanatta ◽  
Andrea Camargo Reis

ABSTRACT The evolution of the reduction in Asian soybean rust (caused by Phakopsora pachyrhizi) control by site-specific fungicides has been reported season after season. In a field experiment, the effect of prothioconazole solo and added to multisite mancozeb was evaluated for rust control. Treatments were evaluated in a factorial design of four prothioconazole doses and three mancozeb doses. In a set of treatments, three applications were performed in one soybean cycle and four applications in another one. The first applications were performed at GS V8, 11 days before rust detection, with 2.56% leaflet incidence, while the other applications were at 12 to 14-day interval. Rust severity was quantified, control was calculated in relation to the unsprayed treatment, and soybean grain yield was estimated as kg/ha. Fifty-one to 61% control was obtained with three sprayings and 68% to 70% control with four sprayings of prothioconazole alone. Over 80% control was obtained with at least 0.3 L/ha prothioconazole + 2.0 kg/ha mancozeb, corresponding to 75 g a.i./ha prothioconazole + 1500 g a.i./ha mancozeb. Reduction in P. pachyrhizi control by the use of the site-specific fungicide alone was confirmed, while the addition of mancozeb can recover the efficacy of the site-specific fungicide.


2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Amanda Chechi ◽  
Valéria Cecília Ghissi-Mazetti ◽  
Elias Zuchelli ◽  
Carolina Cardoso Deuner ◽  
Carlos Alberto Forcelini ◽  
...  

ABSTRACT: Asian soybean rust is one of the most destructive diseases that can be found in this crop. It can be largely controlled by fungicide application. The objective was to assess the sensitivity of P. pachyrhizi isolates to fungicides. The tests were performed in a completely randomized design, with six replicates. The sensitivity of twelve isolates to site-specific and multisite fungicides at concentrations of 0.1; 1.0; 10.0, and 100.0 mg L-1, plus a control with absence of fungicide (0.0 mg L-1) was assessed. Soybean leaflets were immersed in the appropriate fungicide solutions, disposed in wet chambers in plastic boxes, and inoculated using each uredinia suspension of P. pachyhrizi (5.0 x 104 uredospores mL-1), separately. Boxes were incubated for 20 days at a temperature of 23°C and a 12-hour photoperiod. Next, the number of uredinia per cm2 on the abaxial face of each leaflet was evaluated. The active ingredients prothioconazole, trifloxystrobin, fluxapiroxade, trifloxystrobin + prothioconazole, trifloxystrobin + bixafen + prothioconazole, azoxystrobin + benzovindiflupyr, and azoxystrobin + benzovindiflupyr + diphenoconazole were highly fungitoxic for the majority of the isolates, with EC50 lower than 1.0 mg L-1. Diphenoconazole, azoxystrobin, and fenpropimorph were considered moderately fungitoxic for nine of the twelve isolates, with EC50 between 1 and 10 mg L-1. The multisites mancozeb and copper oxychloride presented EC50 responses classified as low toxic for the twelve isolates and eight for chlorothalonil (EC50 between 10 mg L-1 and 50 mg L-1). Site-specific fungicides showed high-to-moderate fungitoxicity to P. pachyrhizi isolates, even as the multisites presented moderate-to-less toxic activity.


Plant Disease ◽  
2005 ◽  
Vol 89 (6) ◽  
pp. 669-674 ◽  
Author(s):  
C. Levy

Phakopsora pachyrhizi was discovered on soybeans in Uganda in 1996. This was the initial confirmation of the pathogen on soybeans in Africa, although there had been earlier unsubstantiated listings on other legumes. Thereafter, it was wind-dispersed southward to Rwanda, Zimbabwe, and Zambia in February 1998, where it severely damaged commercial plantings. It also devastated small-scale fields in eastern Nigeria at about this time. Rust continued its southward movement to southern Mozambique in early 2000, and into eastern South Africa in March 2001. By early 2003, substantial losses were being reported from western Cameroon. Scientists in Zimbabwe and South Africa have coordinated their research to combat the pathogen and have developed a strategy based on the effective, economical use of fungicides and the development of resistant germ plasm. The chemical and spraying recommendations resulting from field studies are discussed in relation to their practicalities, and a preliminary analysis of the meteorological data recorded will show the fundamental factors that influence the development of an epidemic.


2020 ◽  
Vol 12 (10) ◽  
pp. 240
Author(s):  
Erlei Melo Reis ◽  
Luana Maria de Rossi Belufi ◽  
Wanderlei Dias Guerra ◽  
Laércio Zambolin ◽  
Mateus Zanatta

In on-farm trials, the foliolar severity of Asian soybean rust was evaluated in 44 areas, in three regions of Mato Grosso sown in December (2019) and February (2020). Several susceptible cultivars were used in different crop systems; insect pests and weeds were controlled with different management systems by the farmers. Forty soybean leaflets from four plots replications, demarcated at random in each field were taken. In laboratory foliolar severity was appraised. For rust control in the trials conducted in February, fungicides with efficiency greater than 60% were used consisting of DMIs, QoIs and SDHIs in double or triple mixtures, always adding multisites (chlorothalonil, mancozeb, copper oxychloride). The severity was greater in the fields sown in December (4.84% than in February 0.68%). The number of fungicides spraying/ha in December was 6.4 and February 4.6. It is discussed that through the use of multisites fungicides, the mutation potential in Phakopsora pachyrhizi is reduced and that the spores from areas cultivated in February, probably due to unfavorable environment, do not survive during the soybean free-period. Our results indicate that the sowing period can be changed from the end of December to February, since multisites fungicides are always used.


2020 ◽  
Vol 13 (1) ◽  
pp. 195
Author(s):  
Erlei Melo Reis ◽  
Mateus Zanatta ◽  
Andrea Camargo Reis

The reduced sensitivity of Phakopsora pachyrhizi to site-specific fungicides used to control Asian soybean rust by the current co-formulations needs investigation. To improve the rust control the performance of cyproconazole + picoxystrobin, tebuconazole + picoxystrobin, cyproconazole + azoxystrobin, epoxyconazole + pyraclostrobin, fluxapyroxade + pyraclostrobin, benzovindiflupyr + azoxystrobin, prothioconazole + trifloxystrobin and cyproconazole + trifloxystrobin mixtures added by five doses of the multisite mancozeb were evaluated. The fungicides were sprayed at four growth stages the first performed at R1 growth stage and the others with 15-18 days intervals. The rust severity was quantified, the control was calculated, the percentage of chlorophyll and the yield of soybean were determined. The mean of rust control by the mixtures without addition of the multi-site fungicide was 46% (21 to 71%). There was an increase in control efficiency due to addition and mancozeb doses in all treatments. Control over 80% was obtained with tebuconazole + picoxystrobin, fluxapyroxade + pyraclostrobin, benzovindiflupyr + azoxystrobin, and prothioconazole + trifloxystrobin added at least of 2.0 kg/ha mancozeb. In unsprayed plots the maximum 78% severity corresponded to 59% damage. There was an increase in chlorophyll content and soybean yield as a function of the mancozebe increased doses: 2,019 kg/ha in the unsprayed control and in the best treatment 5,132 kg/ha. Actual control reduction due to fungal decrease in sensitivity can be improved by the multi-site fungicide addition.


2019 ◽  
Vol 45 (3) ◽  
pp. 261-264
Author(s):  
Erlei Melo Reis ◽  
Mateus Zanatta ◽  
Andrea Camargo Reis

ABSTRACT In an experiment conducted in the field, during the 2017/18 growing season, with the soybean cultivar Syn 1561 IPRO, the interaction of chlorothalonil levels with application intervals was evaluated for the control of Asian soybean rust, caused by Phakopsora pachyrhizi. The first fungicide application was performed in V8 stage, 44 days after emergence, with 1.85% rust leaflet incidence. The experiment consisted of a factorial arrangement with five fungicide levels (1.0, 1.5, 2.0, 2.5 and 3.0 L/ha) applied at 8, 12 and 16-day intervals, using randomized block treatments and four replicates. A self-propelled sprayer with 16 bars, XR11001VS nozzles and 150 L/ha volume was employed. Leaflet rust severity in R5.4 stage and grain yield were evaluated. Data were subjected to analysis of variance, and means were compared according to Tukey’s test. At eight-day intervals (six sprayings), control ranged from 75% to 93%; at 12-day intervals (four sprayings), it ranged from 35 to 63%, and at 16-day intervals (three sprayings), control ranged from 15 to 29% according to the sprayed levels. The longer the interval between applications, the lower the response of the used level for rust control and soybean grain yield. Chlorothalonil showed fungitoxicity to integrate a program of anti-resistance strategies to control soybean rust.


2021 ◽  
Vol 13 (11) ◽  
pp. 141
Author(s):  
Erlei Melo Reis ◽  
Wanderlei Dias Guerra ◽  
Andrea Camargo Reis ◽  
Mateus Zanatta ◽  
Marcelo Carmona ◽  
...  

Multisite fungicides have been used for many years in fruit and vegetable crops worldwide. Cases of the fungi resistance development to these fungicides have been rare. From the 2002 season onwards, with the outbreak of Asian soybean rust in Brazil, caused by Phakopsora pachyrhizi, site-specific fungicides became the main weapon for its control. From 2002 to 2011, penetrant mobile site-specific fungicides were used and until today in double (DMI + QoI) or triple (DMI + QoI + SDHI) co-formulatoons in an area of more than 30 million hectares and with three sprays per area. This resulted, as expected, in the fungus sensitivity reduction, today with cross and multiple resistance to those site-specific fungicides. From the 2011 season in an attempt to recover control that for some chemicals and mixtures reached < 30%, research was started with site-specific + multi-site mixtures, taking as example Phytophthora infestans resistance development to metalaxyl in Europe showinig long-lasting solution found by the addition of multisite mancozeb. It is expected that the effective life of site-specific + multi-site mixtures may be as long in controlling soybean rust as it has been for potato, tomato and grape downy mildews. This review presents the concepts involved in the sensitivity reduction to fungicides. Some fungal species and fungicides involved are listed. Considering the P. pachyrhizi sporulation potential, the great soybean area sprayed and the number of sprays per area mainly with site-specific co-formulations and the reduced area sprayed with multisites, we discuss the need for annual monitoring of P. pachyrhizi sensitivity to the these chemicals.


2017 ◽  
Vol 107 (10) ◽  
pp. 1187-1198 ◽  
Author(s):  
L. Wen ◽  
C. R. Bowen ◽  
G. L. Hartman

Dispersal of urediniospores by wind is the primary means of spread for Phakopsora pachyrhizi, the cause of soybean rust. Our research focused on the short-distance movement of urediniospores from within the soybean canopy and up to 61 m from field-grown rust-infected soybean plants. Environmental variables were used to develop and compare models including the least absolute shrinkage and selection operator regression, zero-inflated Poisson/regular Poisson regression, random forest, and neural network to describe deposition of urediniospores collected in passive and active traps. All four models identified distance of trap from source, humidity, temperature, wind direction, and wind speed as the five most important variables influencing short-distance movement of urediniospores. The random forest model provided the best predictions, explaining 76.1 and 86.8% of the total variation in the passive- and active-trap datasets, respectively. The prediction accuracy based on the correlation coefficient (r) between predicted values and the true values were 0.83 (P < 0.0001) and 0.94 (P < 0.0001) for the passive and active trap datasets, respectively. Overall, multiple machine learning techniques identified the most important variables to make the most accurate predictions of movement of P. pachyrhizi urediniospores short-distance.


Sign in / Sign up

Export Citation Format

Share Document