scholarly journals Carbon Mineralization in Soils Irrigated with Treated Swine Wastewater

2017 ◽  
Vol 9 (3) ◽  
pp. 19 ◽  
Author(s):  
Sarah Mello Leite Moretti ◽  
Edna Ivani Bertoncini ◽  
Cassio Hamilton Abreu-Junior

Treated swine wastewater agricultural use can promote environmental and agronomical improvements, however, the inappropiate management of this organic load added on soil can cause unbalances in soil fertility and in availability of nutrients and/or contaminants. Thus, this study aim was evaluate the organic matter biodegradation of treated swine wastewater (WB) and diluted swine wastewater (WBD) applied in Oxisol clayey texture (CS) and in Ultisol (SS) with medium-sandy texture. The treatments studied were: R1 – CS control; R2 – irrigation with WB on CS; R3 – irrigation with WBD on CS; R4 – SS control; R5 – irrigation with WBD on SS; R6 – irrigation with WBD on SS. Three applications were done in flasks containing 500 g of soils sampled from depth of 0-20 cm, the C-CO2 evolutions and degradation fractions were quantified after each application. The results obtained were adjusted to first-order chemical kinetics model. More than half organic matter was biodegraded between 4 and 10 days of incubation, when higher WB amount was applied (33.3 mm). Sucessive WBD use caused degradation of organic matter remaning of previous application. Higher CO2 evolutions were obtained for Oxisol treatments due to higher carbon contents of this soil. SW use caused depletion of Ultisol native organic matter. However, the WB use in Oxisol provided accumulation of organic matter. Soon, the respirometry test evidenced the importance of evaluate the soil depuration capacity before agricultural use, since that this process can affect the contents of organic matter native of these soils and the availabity of nutrient/contaminant for soil-water-plant system.

2015 ◽  
Author(s):  
Ricardo A Castro-Huerta ◽  
Fernando R Momo ◽  
Liliana B Falco ◽  
César A Di Ciocco ◽  
Carlos E Coviella

The processes involved in the flows of matter and energy of terrestrial ecosystems depends heavily on soil biological activity, the current conventional agricultural managements could alter the biological mechanisms involved in decomposition and nutrient cycling in agroecosystems. The aim of this study was to compare the activity levels and soil microbial biomass between different agricultural pampean soil uses and its relationship to carbon mineralization. 25 years of agricultural use were compared with 25 years of ecological reserve naturalized where each agroecosystem soil were collected at 61 - 125 - 183 - 236 - 302 - 368 - 431 - 488 days for measuring their moisture, organic matter, enzymatic activity, microbial biomass carbon, soil respiration, metabolic quotient, microbial quotient and carbon mineralization rate. The distance between agroecosystems is less than 800 m, thus assuming the same soil and climatic conditions. The data were evaluated by Friedman test finding significant differences in moisture, organic matter, enzymatic activity, soil respiration y microbial quotient (p< 0.01). Difference was also found in the microbial mineralization rate of carbon (p< 0.1).


2015 ◽  
Author(s):  
Ricardo A Castro-Huerta ◽  
Fernando R Momo ◽  
Liliana B Falco ◽  
César A Di Ciocco ◽  
Carlos E Coviella

The processes involved in the flows of matter and energy of terrestrial ecosystems depends heavily on soil biological activity, the current conventional agricultural managements could alter the biological mechanisms involved in decomposition and nutrient cycling in agroecosystems. The aim of this study was to compare the activity levels and soil microbial biomass between different agricultural pampean soil uses and its relationship to carbon mineralization. 25 years of agricultural use were compared with 25 years of ecological reserve naturalized where each agroecosystem soil were collected at 61 - 125 - 183 - 236 - 302 - 368 - 431 - 488 days for measuring their moisture, organic matter, enzymatic activity, microbial biomass carbon, soil respiration, metabolic quotient, microbial quotient and carbon mineralization rate. The distance between agroecosystems is less than 800 m, thus assuming the same soil and climatic conditions. The data were evaluated by Friedman test finding significant differences in moisture, organic matter, enzymatic activity, soil respiration y microbial quotient (p< 0.01). Difference was also found in the microbial mineralization rate of carbon (p< 0.1).


2016 ◽  
Vol 15 (10) ◽  
pp. 2261-2266
Author(s):  
Xiaowei Li ◽  
Jie Zhang ◽  
Weiwei Zhao ◽  
Xuewen Yi ◽  
Wei Lin ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 882
Author(s):  
Saulo Brito-Espino ◽  
Alejandro Ramos-Martín ◽  
Sebastian O. Pérez-Báez ◽  
Carlos Mendieta-Pino ◽  
Federico Leon-Zerpa

Anaerobic lagoons are natural wastewater treatment systems suitable for swine farms in small communities due to its low operational and building costs, as well as for the environmental sustainability that these technologies enable. The local weather is one of the factors which greatly influences the efficiency of the organic matter degradation within anaerobic lagoons, since microbial growth is closely related to temperature. In this manuscript, we propose a mathematical model which involves the two-dimensional Stokes, advection–diffusion-reaction and heat transfer equations for an unstirred fluid flow. Furthermore, the Anaerobic Digestion Model No1 (ADM1), developed by the International Water Association (IWA), has been implemented in the model. The partial differential equations resulting from the model, which involve a large number of state variables that change according to the position and the time, are solved through the use of the Finite Element Method. The results of the simulations indicated that the methodology is capable of predicting reasonably well the steady-state of the concentrations for all processes that take place in the anaerobic digestion and for each one of the variables considered; cells, organic matter, nutrients, etc. In view of the results, it can be concluded that the model has significant potential for the design and the study of anaerobic cells’ behaviour within free flow systems.


2021 ◽  
Vol 13 (7) ◽  
pp. 3957
Author(s):  
Yingying Xing ◽  
Ning Wang ◽  
Xiaoli Niu ◽  
Wenting Jiang ◽  
Xiukang Wang

Soil nutrients are essential nutrients provided by soil for plant growth. Most researchers focus on the coupling effect of nutrients with potato yield and quality. There are few studies on the evaluation of soil nutrients in potato fields. The purpose of this study is to investigate the soil nutrients of potato farmland and the soil vertical nutrient distributions, and then to provide a theoretical and experimental basis for the fertilizer management practices for potatoes in Loess Plateau. Eight physical and chemical soil indexes were selected in the study area, and 810 farmland soil samples from the potato agriculture product areas were analyzed in Northern Shaanxi. The paper established the minimum data set (MDS) for the quality diagnosis of the cultivated layer for farmland by principal component analysis (PCA), respectively, and furthermore, analyzed the soil nutrient characteristics of the cultivated layer adopted soil quality index (SQI). The results showed that the MDS on soil quality diagnosis of the cultivated layer for farmland soil included such indicators as the soil organic matter content, soil available potassium content, and soil available phosphorus content. The comprehensive index value of the soil quality was between 0.064 and 0.302. The SPSS average clustering process used to classify SQI was divided into three grades: class I (36.2%) was defined as suitable soil fertility (SQI < 0.122), class II (55.6%) was defined as moderate soil fertility (0.122 < SQI < 0.18), and class III (8.2%) was defined as poor soil fertility (SQI > 0.186). The comprehensive quality of the potato farmland soils was generally low. The proportion of soil nutrients in the SQI composition ranged from large to small as the soil available potassium content = soil available phosphorus content > soil organic matter content, which became the limiting factor of the soil organic matter content in this area. This study revolves around the 0 to 60 cm soil layer; the soil fertility decreased gradually with the soil depth, and had significant differences between the respective soil layers. In order to improve the soil nutrient accumulation and potato yield in potato farmland in northern Shaanxi, it is suggested to increase the fertilization depth (20 to 40 cm) and further study the ratio of nitrogen, phosphorus, and potassium fertilizer.


2021 ◽  
Author(s):  
Mathias Mayer ◽  
Boris Rewald ◽  
Bradley Matthews ◽  
Hans Sandén ◽  
Christoph Rosinger ◽  
...  

2007 ◽  
Vol 55 (10) ◽  
pp. 145-153 ◽  
Author(s):  
T. Ölmez ◽  
I. Kabdaşlı ◽  
O. Tünay

In this study, the effects of the phosphonic acid based sequestering agent EDTMPA used in the textile dye baths on colour and organic matter removal by ozone oxidation was experimentally investigated. Procion Navy HEXL dyestuff that has been commonly used for the reactive dyeing of cellulose fibers was selected as the model component. The organic matter oxidation by ozone was determined to obey the pseudo-first order kinetics as they are treated singly or in combination. COD removal rates obtained from pseudo-first order reaction kinetics showed that oxidation of Navy HEXL alone (0.0947 L/min) was faster than that of EDTMPA (0.0171 L/min) and EDTMPA with dye (0.0155 L/min) at pH 3.0. It was also found that reaction rates of single EDTMPA removal and EDTMPA and dye mixture removal increased as the reaction pH was increased from 3.0 to 10.5.


1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


2009 ◽  
Vol 59 (7) ◽  
pp. 1361-1369 ◽  
Author(s):  
Edison Gil Pavas ◽  
Miguel Ángel Gómez-García

This work deals with the treatment of the wastewaters resulting from the process of dyeing flowers. In some local cases for growing flowers near to Medellín (Colombia), wastewater color was found to be one of the main problems in meeting local effluent standards. Wastewaters were treated by photodegradation process (which includes photocatalysis) to achieve the degradation of dyes mixture and organic matter in the wastewater. A multifactorial experimental design was proposed, including as experimental factors the following variables: pH, and the concentration of both catalyst (TiO2) and hydrogen peroxide (H2O2). According to the obtained results, at the optimized variables values, it is possible to reach a 99% reduction of dyes, a 76.9% of mineralization (TOC) and a final biodegradability of 0.834. Kinetic analysis allows proposing a pseudo first order reaction for the reduction, the mineralization, and the biodegradation processes.


Sign in / Sign up

Export Citation Format

Share Document