scholarly journals Phosphorus Sorption Behavior of Torrefied Agricultural Byproducts under Sonicated Versus Non-Sonicated Conditions

2017 ◽  
Vol 6 (4) ◽  
pp. 1 ◽  
Author(s):  
Jehangir H. Bhadha ◽  
Stephen P. Jennewein ◽  
Raju Khatiwada

The application of agrichar derived from organic feedstocks has the potential to improve soil fertility and crop production by providing major nutrients like phosphorus (P) to the crop, and in some cases also reducing P leaching. The effect of agrichar on the leaching of P in soils is not uniform and can vary depending on the type of agrichar and amount applied. The objective of this study was to (i) evaluate the behavior of four agrichars (rice hulls RH, palm fronds PF, horse bedding HB, and bagasse BG) for their ability to retain/release P and (ii) determine the effect of wet sonication on P sorption behavior. The feedstocks were torrefied at 500 °C using a top-lit updraft gasifier and used in multiple batch incubation experiments to evaluate equilibrium phosphorus concentration, maximum P sorption capacity (Smax), and adsorption/desorption potential. Both, RH (12.6 g kg-1) and HB (11.5 g kg-1) contained 10-15 times higher total P concentration than PF and BG, rendering RH and HB as potentially suitable products to be used as soil amendments. However, this initial P content of the agrichar seemed to have an overriding effect on the P sorption behavior of the agrichar. PF had Smax of 676 (±127) mg kg-1 for the non-sonicated agrichar, and 237 (±91) mg kg-1 following sonication. There was significant increase in CEC for PF and BG agrichar upon sonication. PF agrichar increased from 27 (±3) cmolc kg-1 to 41 (±4) cmolc kg-1 with sonication. Similarly, BG agrichar CEC increased from 21 (±2) cmolc kg-1 to 45 (±5) cmolc kg-1 with sonication. Initial total P and Ca concentration and their ratios was found to play significant roles on P adsorption and desorption. Major cations like Ca, Fe, Al and Mn are found to act as active sorption site for phosphorus controlling its fate and mobility along with compounding effects of other physicochemical parameters.

2020 ◽  
Vol 17 (2) ◽  
pp. 117-126
Author(s):  
JC Joardar ◽  
S Sikder ◽  
SB Hasib

Low availability of phosphorus (P) due to P sorption onto soil is one of the major hindrances that greatly affect crop production. So, the understanding of P-soil interactions plays a vital role for increasing agronomic efficiency as well as proper P management. For optimal crop production, annual P application rates should be in equilibrium with the rate of P sorption by soil to ensure the presence of sufficient P in soil. So, it is important to identify the rate of P sorption with time. The focus of this study was to determine and compare the influence of solution P concentrations and equilibrium time on P sorption in calcareous and noncalcareous soils. In the experiment, 0, 2.5, 5, 10, 20 and 50 μg P ml-1 solutions were taken and the sorption rate was investigated at 6, 12, 24 and 48 hour time periods. The results indicate that the P retention onto soil significantly increased with increasing concentration of solution P. Equilibrium time also influenced P sorption. The maximum P sorption was found after 24 hours. After 48 hours, some desorption of fixed P was observed that reflects the reversibility of sorbed P with time. The higher P sorption was found in calcareous soil than in noncalcareous soil irrespective of equilibrium time and solution P concentration. SAARC J. Agri., 17(2): 117-126 (2019)


2019 ◽  
Vol 65 (No. 2) ◽  
pp. 78-82 ◽  
Author(s):  
Ewa Szara ◽  
Tomasz Sosulski ◽  
Magdalena Szymańska

The study aimed at the evaluation of the accumulation and vertical distribution of different forms of phosphorus (P) in reference to phosphorus sorption properties subject to mineral (NPK), mineral-organic (NPK + M), and organic (M) fertilisation. It was carried out in a long-term experimental field in Skierniewice (Central Poland) conducted since 1923 under rye monoculture. Total P content in the M and NPK soil profile was similar and lower than in the NPK + M soil. The content of organic P in A<sub>p</sub> and E<sub>et</sub> horizons of both manured soils was similar and higher than in the NPK soil. The Langmuir P sorption maximum (S<sub>max</sub>) in the studied soils ranged from 39.7 to 90 mg P/kg, while the Freundlich P sorption coefficient a<sub>F</sub> ranged from 6.9 to 41.9 mg P/kg. Higher variability of parameters related to the binding energy from the Lanqmuir (k) and Freundlich (a<sub>F</sub>) equations was determined between soil horizons than between the fertilisation systems. Nonetheless, in M and NPK + M soils, sorption parameters a<sub>F</sub> and S<sub>max</sub> and binding energy (k, b<sub>F</sub>) were considerably lower than in the NPK soil. The content of water extracted P in manured soils was higher than in the NPK soil.


Soil Research ◽  
1997 ◽  
Vol 35 (2) ◽  
pp. 365 ◽  
Author(s):  
I. C. R. Holford ◽  
C. Hird ◽  
R. Lawrie

Two groups of soils were examined to determine the effects of dairy, pig, or sewage effluent and other materials containing phosphorus (P) on their P sorption characteristics, using the Langmuir equation to estimate values of both sorption capacity and sorption strength. There were 19 soils (0-15 cm) from 6 sites in the Williams River catchment and 3 soils (0-100 cm) from Bermagui, all from coastal New South Wales. Effluent usually decreased P sorption capacities of the Williams River soils, and in 3 soils the capacities were reduced to zero. Sorption strength was reduced substantially by effluent treatment in all soils except one, which had received effluent for only 3 years. Sorption strength, but not necessarily capacity, was also lower after treatment with poultry manure or chicken litter than after treatment with superphosphate only. Where effluent did not decrease sorption capacity there was a substantial increase in total carbon and iron, both of which could increase sorption capacities. After 3 years of effluent treatment of the Bermagui soil, sorption capacities had been reduced in the top 70 cm depth, the extent of the reduction varying from 17% at 0-7 · 5 cm depth to 38% at 40-70 cm depth. Sorption strength was reduced in the top 40 cm depth only. After 12 years of effluent treatment, sorption capacities and strength had also decreased at the deeper sampling depths (to 100 cm), and the average reduction in capacity was about 40%. These results suggest that P leaching will begin well before the total sorption capacity has been saturated. There was a direct and significant correlation between the sorption strength of the untreated soil and the percentage saturation reached before leaching began. Further saturation of the sorption complex appears to be slow after this degree of saturation has been reached, and it seems that P leaching exceeds adsorption during this phase. There was also a negative correlation between sorption strength and KCl-soluble P in all soils, suggesting that soil P solubility and potential saturation are both controlled by this characteristic.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Anna Slazak ◽  
Dirk Freese

The objectives of the work were to study phosphorus (P) dynamics in postmining soils under short rotation coppices at different stages ofRobinia pseudoacaciaL. growth (2, 3, 4, and 14 years old). From the results obtained, the amount of total P, total organic P, plant available P, and P stock increased with increasing age ofR. pseudoacacia. However, values were very low compared to that recommended for optimum plant growth, reflecting a general deficit in P. Additionally, the P sorption and desorption processes were investigated. The total P sorption capacity obtained from the laboratory experiments was on average, 2.5 times greater for soils under the oldestR. pseudoacaciathan values measured at the younger sites. Values of P saturation factor (α) were comparatively lower compared to that reported in the literature. This may be attributed primarily to the less P saturation of the postmining soils, coupled with rather small contents of oxalate ironFeoxand aluminiumAlox(sum of 47 mmol kg−1). Results demonstrate significant difference between 2 and 14 years oldR. pseudoacacia; thus establishing of short rotation coppice (SRC) on degraded marginal sites may be a valuable method of soil reclamations.


Author(s):  
Berhanu Dinssa ◽  
Eyasu Elias

<span>One of the most soil fertility management problems for crop production on acidic soils of the Ethiopian highlands is phosphorus fixation. The research was executed to assess the P-sorption capacity and to determine the external P requirement of different acidic soils in the Southwestern highlands of Ethiopia. Phosphorus sorption capacity (Kf) and its relation with selected soil characteristics were assessed for some major agricultural soils in the Ethiopian highlands to answer the questions, ‘What are the amount of P-sorption capacity and external P requirement of Nitisols, Luvisols, Alisols, and Andosols in Ethiopia?’. Twelve surface soil samples (at depth of 0-30 cm) were gathered and the P-sorption capacity was estimated. Phosphorus-sorption data were obtained by equilibrating 1 g of the 12 soil samples with 25 ml of KH<sub>2</sub>PO<sub>4</sub> in 0.01 M CaCl2, having 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, and 330 mg P L<sup>-1</sup> for 24 hours. The data were adjusted to the Freundlich adsorption model and the relationship among P-sorption and soil characteristics was established by correlation analysis.  Clay content and exchangeable acidity, organic matter, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub> oxides have affected phosphorus-sorption at a significance level of (P &lt; 0.05).  Alisols had the highest Kf value (413 mg kg<sup>-1</sup>) but Nitisols had the lowest Kf (280 mg kg<sup>-1</sup>). The external phosphorus fertilizer requirement of the soils was in the order of 25, 30, 32, and 26 mg P kg<sup>-1</sup> for Nitisols, Luvisols, Alisols, and Andosols sequentially. The Kf varies among different soil types of the study area. The magnitude of the soil’s Kf was affected by the pH of the soil, soil OM content, and oxides of Fe and Al. Therefore, knowledge of the soils’ P retention capacity is highly crucial to determine the correct rate of P </span><span>fertilizer</span><span> for crop production.</span>


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 858G-858
Author(s):  
Catherine S.M. Ku

Earlier study indicates that greenhouse crop production may be an overlooked point source of P pollution. A potential strategy to reduce P leaching may be to eliminate superphosphate amendment in soilless medium. Single-pinched `Amy' poinsettias (Euphorbia pulcherrima) in 15-cm pots were grown in a soilless medium of 3 peat: 1 perlite: 1 vermiculite (by volume). A treatment combination of preplant, finely ground, single superphosphate (SSP) (0N–8.8P–0K) amendment at 0 or 172 mg/pot and leaching fractions (LFs) of 0 and 0.2 were evaluated in a completely randomized design during a 10.5-week study. Plants received constant liquid fertigation with 7.8 mg P/liter and 210 mg N/liter from modified Hoagland solution #1. The total P applied via fertigation ranged from ≈38 mg at 0 LF to ≈50 mg at 0.2 LF. The leachate P concentration ranged from 4 mg/liter to 38 mg/liter. There was no significant difference in yield due to SSP and LF. Across all treatments, mean fresh mass was 36 g, mean dry mass was 5.9 g, mean leaf area was 980 cm2, and mean bract area was 1900 cm2.


Soil Systems ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 30
Author(s):  
Shreeram Inamdar ◽  
Nathan Sienkiewicz ◽  
Alyssa Lutgen ◽  
Grant Jiang ◽  
Jinjun Kan

Streambank legacy sediments can contribute substantial amounts of sediments to Mid-Atlantic waterways. However, there is uncertainty about the sediment-bound P inputs and the fate of legacy sediment P in surface waters. We compared legacy sediment P concentrations against other streambank sediments and upland soils and evaluated a variety of P indices to determine if legacy sediments are a source or sink of P to surface waters. Legacy sediments were collected from 15 streambanks in the mid-Atlantic USA. Total P and M3P concentrations and % degree of phosphorus saturation (DPS) values for legacy sediments were lower than those for upland soils. % DPS values for legacy sediments were below the water quality threshold for P leaching. Phosphorus sorption index (PSI) values for legacy sediments indicated a large capacity for P sorption. On the other hand, equilibrium phosphorus concentration (EPC0) for legacy sediments suggested that they could be a source or a sink depending on stream water P concentrations. Anoxic conditions resulted in a greater release of P from legacy sediments compared to oxic conditions. These results suggest that legacy sediment P behavior could be highly variable and watershed models will need to account for this variability to reliably quantify the source-sink behavior of legacy sediments in surface waters.


Euphytica ◽  
2021 ◽  
Vol 217 (4) ◽  
Author(s):  
Jakob Eifler ◽  
Jürgen Enno Wick ◽  
Bernd Steingrobe ◽  
Christian Möllers

AbstractPhytic acid is the major organic phosphorus storage compound in rapeseed. Following oil extraction, the defatted meal is used in feed mixtures for livestock. However, monogastric pigs and chickens can only poorly metabolize phytate. Hence, their excrements are rich in phosphorus (P), which when applied as manure may lead to eutrophication of surface waters. The aim of the present study was to analyze the genetic variation for total and organic P concentration (i.e. mainly phytate) in rapeseed and to compare the results with soybean. Two sets of rapeseed material were tested in field experiments in different environments with varying soil P levels and harvested seeds were used for seed quality analysis. Results revealed significant genotypic differences in total seed P concentration, which ranged from 0.47 to 0.94%. Depending on the experiment, the heritability for total P concentration ranged from 52 to 93%. The organic P portion of total P concentration was above 90% for current rapeseed hybrids. In both sets, there was a significant positive correlation between seed protein and P concentration. A NIRS calibration for total P concentration in intact seeds showed in cross validation a standard error of 0.05% and a coefficient of determination of R2 = 0.83. Total P concentration of soybean seeds and meal was between 0.55 and 0.65%, and around 1.1% for rapeseed meal. Rapeseed meal had a twofold higher ratio of total P to nitrogen concentration as compared to soybean which could be considered adverse when the meal is used for feeding livestock.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Jonathan Suazo-Hernández ◽  
Erwin Klumpp ◽  
Nicolás Arancibia-Miranda ◽  
Patricia Poblete-Grant ◽  
Alejandra Jara ◽  
...  

Engineered nanoparticles (ENPs) present in consumer products are being released into the agricultural systems. There is little information about the direct effect of ENPs on phosphorus (P) availability, which is an essential nutrient for crop growthnaturally occurring in agricultural soils. The present study examined the effect of 1, 3, and 5% doses of Cu0 or Ag0 ENPs stabilized with L-ascorbic acid (suspension pH 2–3) on P ad- and desorption in an agricultural Andisol with total organic matter (T-OM) and with partial removal of organic matter (R-OM) by performing batch experiments. Our results showed that the adsorption kinetics data of H2PO4− on T-OM and R-OM soil samples with and without ENPs were adequately described by the pseudo-second-order (PSO) and Elovich models. The adsorption isotherm data of H2PO4− from T-OM and R-OM soil samples following ENPs addition were better fitted by the Langmuir model than the Freundlich model. When the Cu0 or Ag0 ENPs doses were increased, the pH value decreased and H2PO4− adsorption increased on T-OM and R-OM. The H2PO4− desorption (%) was lower with Cu0 ENPs than Ag0 ENPs. Overall, the incorporation of ENPs into Andisols generated an increase in P retention, which may affect agricultural crop production.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 295
Author(s):  
Marina Moura Morales ◽  
Nicholas Brian Comerford ◽  
Maurel Behling ◽  
Daniel Carneiro de Abreu ◽  
Iraê Amaral Guerrini

The phosphorus (P) chemistry of biochar (BC)-amended soils is poorly understood. This statement is based on the lack of published research attempting a comprehensive characterization of biochar’s influence on P sorption. Therefore, this study addressed the kinetic limitations of these processes. This was accomplished using a fast pyrolysis biochar made from a mix of waste materials applied to a highly weathered Latossolo Vermelho distrofico (Oxisol) from São Paulo, Brazil. Standard method (batch method) was used. The sorption kinetic studies indicated that P sorption in both cases, soil (S) and soil-biochar (SBC), had a relatively fast initial reaction between 0 to 5 min. This may have happened because adding biochar to the soil decreased P sorption capacity compared to the mineral soil alone. Presumably, this is a result of: (i) Inorganic phosphorus desorbed from biochar was resorbed onto the mineral soil; (ii) charcoal particles physically covered P sorption locations on soil; or (iii) the pH increased when BC was added SBC and the soil surface became more negatively charged, thus increasing anion repulsion and decreasing P sorption.


Sign in / Sign up

Export Citation Format

Share Document