scholarly journals Age, origin and tectonic setting of Dulaankhan granitic pluton in northern Mongolia

2019 ◽  
pp. 22-34
Author(s):  
Baatar Gendenjamts ◽  
Baatar Munkhtsengel ◽  
Dashdorjgochoo Odgerel ◽  
Dorjgochoo Sanchir ◽  
Bayaraa Ganbat

Dulaankhan granitic pluton, which is situated in northern Mongolia, the southern portion of the Mongolian-Transbaikalian belt (MTB), is petrographically composed of fine to medium-grained peralkaline granite and is intruded by a small body of quartz syenite. Geochemical data show the Dulaankhan granite and the intruding quartz syenite are both slightly peraluminous and high-K calc-alkaline, and are enriched in LREEs relative to the HREEs, with negative Eu anomaly, and in large ion lithophile elements (LILEs; such as K, Cs and Rb) with respect to high field strength elements (HFSEs; e.g., Nb, Ta and Ti). In terms of relations of Nb, Zr and Y to Ga/Al, however, the Dulaankhan granite and quartz syenite show geochemical features of A-type granites and can be classified into the A2-sub type granite, implying that the pluton formed in an post-collision extensional environment. LA-ICPMS zircon U-Pb dating results suggest that the Dulaankhan granite crystallized at 198±1 Ma, whereas the intruding quartz syenite at 180±1 Ma, consistent with our field observation that the quartz syenite intrudes the granite, attesting that the two granitic bodies were emplaced at different times although both of them formed during the Early Jurassic period. According to these new data, as well as regional ones, we propose that the Dulaankhan granitic pluton was likely generated in the post-collision setting related to the orogenesis of the Mongol-Okhotsk belt that seems to occur prior to Early Jurassic in the northern Mongolian segment.

2020 ◽  
Vol 113 (1) ◽  
Author(s):  
Sihua Yuan ◽  
Franz Neubauer ◽  
Yongjiang Liu ◽  
Johann Genser ◽  
Boran Liu ◽  
...  

Abstract The Grobgneis complex, located in the eastern Austroalpine unit of the Eastern Alps, exposes large volumes of pre-Alpine porphyric metagranites, sometimes associated with small gabbroic bodies. To better understand tectonic setting of the metagranites, we carried out detailed geochronological and geochemical investigations on the major part of the porphyric metagranites. LA–ICP–MS zircon U–Pb dating of three metagranites sampled from the Grobgneis complex provides the first reliable evidence for large volumes of Permian plutonism within the pre-Alpine basement of the Lower Austroalpine units. Concordant zircons from three samples yield ages at 272.2 ± 1.2 Ma, 268.6 ± 2.3 Ma and 267.6 ± 2.9 Ma interpreted to date the emplacement of the granite suite. In combination with published ages for other Permian Alpine magmatic bodies, the new U–Pb ages provide evidence of a temporally restricted period of plutonism (“Grobgneis”) in the Raabalpen basement Complex during the Middle Permian. Comparing the investigated basement with that of the West Carpathian basement, we argue that widespread Permian granite magmatism occurred in the Lower Austroalpine units. They belong to the high-K calc-alkaline to shoshonitic S-type series on the base of geochemical data. Zircon Hf isotopic compositions of the Grobgneis metagranites show εHf(t) values of − 4.37 to − 0.6, with TDM2 model ages of 1.31–1.55 Ga, indicating that their protoliths were derived by the recycling of older continental crust. We suggest that the Permian granitic and gabbroic rocks are considered as rifted-related rocks in the Lower Austroalpine units and are contemporaneous with cover sediments.


2020 ◽  
Vol 57 (2) ◽  
pp. 275-291
Author(s):  
Hao-Ran Li ◽  
Ye Qian ◽  
Feng-Yue Sun ◽  
Liang Li

The Zhanbuzhale region, in the Eastern Kunlun Orogen of northwestern China, is characterized by large volumes of Phanerozoic granitoid rocks and is an ideal region for investigating the tectonic evolution of the Paleo-Tethys system. However, the exact timing of the final closure of the Paleo-Tethys Ocean and initial continental collision remains controversial because of a lack of precise geochronological and detailed geochemical data. In this paper, we report new zircon U–Pb ages and mineralogical, petrographic, and geochemical data for samples of Middle Triassic granodiorite and alkali feldspar granite from the Zhanbuzhale region. The zircon U–Pb ages indicate that the granodiorite and alkali feldspar granite formed at 239 and 236 Ma, respectively. The granodiorites are high-K calc-alkaline, metaluminous, high Sr content, high Sr/Y ratios, low Y content, and show adakite-like affinities. The alkali feldspar granites display high SiO2, extremely low MgO, and low Zr+Nb+Ce+Y contents as well as low Fe2O3t/MgO ratios, showing metaluminous to peraluminous and high-K calc-alkaline features. Geochemical and petrological characteristics of the alkali feldspar granites suggest that they are highly fractionated I-type granites. The granodiorites and alkali feldspar granites have zircon εHf(t) values ranging from –2.26 to –0.18, and from –2.17 to +2.18, respectively. Together with regional geological data, we propose that the Triassic (approximately 239–236 Ma) granitoids were generated during the later stages of northward subduction of the Paleo-Tethys oceanic plate, and that the initial stage of collision between the East Kunlun and the Bayan Har–Songpan Ganzi terrane occurred at approximately 236–227 Ma.


2014 ◽  
Vol 962-965 ◽  
pp. 286-291
Author(s):  
Xin Li Wang ◽  
Wen Tian Mi ◽  
Yi Wei Peng ◽  
Hu Gao ◽  
Li Qiang Zhang ◽  
...  

Halegati Fe-Cu deposit of skarn was located in the Boluokenu metallogenic belt. With the research of the geochemistry characteristic of granodiorites, the results showed that the rocks belonged to I type granite with the features of siliceous, metaluminous, low magnesium , high-k and alkalic. The intrusive rocks had a close association with the mineralization, which had the features of enrichment of large-ion lithophile elements (K, Rb, Ba, Th) and relative depleted in high-field strength elements (Nb, Ta, P, Ti).The intrusive rocks in Halegati had the characteristic of strongly differentiation between LREE and HREE and negative Eu anomalies obviously. The REE distribution curves had the right types. The intrusive rocks were formed in the environment of volcanic arc, which produced in the tectonic setting of supra subduction zone.


2013 ◽  
Vol 868 ◽  
pp. 125-128
Author(s):  
Yan Dao ◽  
Feng Li ◽  
Wang Rong

Geochemistry Characteristics of iudingshan Porphyry Cu-Mo Polymetallic Deposit are analyzed in the presented work. The Jiudingshan alkaline-rich porphyry is formed in Cenozoic (from 52 Ma to 29 Ma), being characterized by high potassium, rich alkali and high alumina can be attributed to high K calc alkaline series and shoshonite series, which showing LREE enrichment, HREE depletion, weak negative Eu anomaly (δEu=0.72~1.02, av.=0.86) close to the crust-mantle granite type (δEu=0.83) and mainly is formed in a post-collisional intraplate tectonic setting.


2001 ◽  
Vol 38 (3) ◽  
pp. 359-372 ◽  
Author(s):  
John WF Ketchum ◽  
Sandra M Barr ◽  
Nicholas G Culshaw ◽  
Chris E White

New U–Pb zircon, titanite, and monazite ages reported here, along with existing age data, demonstrate that granitoid bodies in the northwestern segment of the Paleoproterozoic Makkovik Province, Labrador, are of three distinct ages. The redefined Island Harbour Bay plutonic suite consists of varied dioritic to granitic units that were syntectonically emplaced into Archean crust of the Kaipokok domain between ca. 1895 Ma and 1870 ± 2 Ma. This plutonism occurred during the early stages of the Makkovikian Orogeny in an obliquely convergent, Andean continental margin setting. The Hares Islands and Drunken Harbour granites form smaller, discrete plutons that were emplaced in or adjacent to the Island Harbour Bay plutonic suite at 1805 ± 5 Ma and 1791 ± 2 Ma, respectively, during dextral strike-slip deformation that accompanied accretion of an outboard juvenile terrane. Magmatic activity during this period was preferentially sited along active structural zones, but also occurred outside of these zones. The undeformed Blacklers Bight A-type granite was emplaced in the Kaipokok domain at 1716 ± 1 Ma, late in the development of the orogen. A-type granites of this age form a significant component of the southeastern Makkovik Province, and their generation is linked to mafic underplating and heterogeneous regional extension. The new age data support the conclusion of earlier workers that crustal growth via synorogenic and postorogenic plutonism was episodic, and allow, along with field and geochemical data, inferences to be made regarding the tectonic setting of individual plutonic events.


2016 ◽  
Vol 46 (4) ◽  
pp. 509-529 ◽  
Author(s):  
Flávio Robson Dias Semblano ◽  
◽  
Moacir José Buenano Macambira ◽  
Marcelo Lacerda Vasquez ◽  
◽  
...  

ABSTRACT: The Tapajós Domain, located in the southern portion of the Amazonian Craton, is a tectonic domain of the Tapajós-Parima Province, a Paleoproterozoic orogenic belt adjacent to a reworked Archean crust, the Central Amazonian Province. This domain has been interpreted as the product of an assemblage of successive magmatic arcs followed by post-orogenic A-type magmatism formed ca. 1880 Ma-old granites of the Maloquinha Intrusive Suite. The study presented here was carried out in four granitic bodies of this suite (Igarapé Tabuleiro, Dalpaiz, Mamoal and Serra Alta) from the eastern part of the Tapajós Domain, as well as an I-type granite (Igarapé Salustiano) related to the Parauari Intrusive Suite. The A-type granites are syenogranites and monzogranites, and alkali feldspar granites and quartz syenites occur subordinately. These rocks are ferroan, alkalic-calcic to alkalic and dominantly peraluminous, with negative anomalies of Ba, Sr, P and Ti and high rare earth elements (REE) contents with pronounced negative Eu anomaly. This set of features is typical of A-type granites. The Igarapé Salustiano granite encompasses monzogranites and quartz monzonites, which are magnesian, calcic to calc-alkalic, high-K and mainly metaluminous, with high Ba and Sr contents and depleted pattern in high field strength elements (HFSE) and heavy rare earth elements (HREE), characteristic of I-type granites. The source of magma of these A-type granites is similar to post-collisional granites, while the I-type granite keeps syn-collisional signature. Most of the studied granites have εNd (-3.85 to -0.76) and Nd TDM model ages (2.22 to 2.46 Ga) compatible with the Paleoproterozoic crust of the Tapajós Domain. We conclude that the Archean crust source (εNd of -5.01 and Nd TDM of 2.6 Ga) was local for these A-type granites.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 631
Author(s):  
Tao Wu ◽  
Zhilong Huang ◽  
Mu Yang ◽  
Dexian Zhang ◽  
Jiawei Zhang ◽  
...  

The Yiliu tungsten polymetallic deposit, located in the south central portion of the Nanling nonferrous metal metallogenic province in South China, is an area with common Yanshanian tectonothermal events. Early Yanshanian magmatism leads to the emplacement of voluminous tungsten-bearing granite intrusions, such as the Baoshan, Benggangling and Junye plutons, which are considered temporally and spatially associated with W-polymetallic mineralization in the Yiliu region. Here, we investigate the basic geological and petrological characteristics of the Junye granites, and present major and trace element geochemical data and bulk-rock Sr-Nd-Pb-Hf isotopic data to gain insight into the petrogenesis and tectonic setting of granitic intrusions in the region. The Junye granites are high-K calc-alkaline and metaluminous to weakly peraluminous [A/CNK = molar ratios of Al2O3/(CaO + Na2O + K2O) = 0.97–1.02] with enrichment in SiO2 (75.68–76.44 wt.%), relatively high total alkalis (K2O + Na2O = 8.06–8.45 wt.%) with K2O/Na2O ratios ranging from 1.12 to 1.42, and moderate Al2O3 (12.62–13.00 wt.%), but low in P2O5 (<0.01 wt.%), MgO (0.02–0.04 wt.%), CaO (0.78–0.95 wt.%) and Fe2O3T (0.93–1.07 wt.%). They show spectacular tetrad effect REE (rare earth element) patterns with low ΣREE content (53.2–145.3 ppm), negative Eu anomalies (δEu = 0.09–0.17) and slight enrichment of LREEs (light rare earth elements) relative to HREEs (heavy rare earth elements). The granites are enriched in Rb (481–860 ppm), Th (16.2–46.1 ppm) and U (25.4–40.8 ppm) but depleted in Ba (1.0–5.8 ppm), Sr (11.1–23.4 ppm), P (9.5–26.7 ppm) and Ti (241–393 ppm). All geochemical features lead us to interpret the Junye granites as highly fractionated I-type granites. These granites underwent intense interaction between highly evolved magma and volatile-rich hydrothermal fluids during the late stage of formation, and accompanied fractional crystallization of biotite, plagioclase and accessory minerals, such as apatite, monazite and allanite. Additionally, the granites show uniform Nd isotopic ratios with calculated εNd (152 Ma) values of −8.28 to −8.91 and Nd model age (TDM2) of 1645 to 1698 Ma, stable age-corrected initial Pb isotopic compositions with (206Pb/204Pb)i of 18.646–19.010, (207Pb/204Pb)i of 15.767–15.786 and (208Pb/204Pb)i of 39.113–39.159, respectively, and homogeneous Hf isotopic values yielding εHf (152 Ma) values from −6.9 to −9.5 with TDM2 ages of 1680 to 2214 Ma, collectively suggesting that the granitic magma was probably derived from the remelting of ancient infracrustal materials in the basement of the Nanling region. Consequently, we consider that the Junye granites are the products of partial melting of Paleoproterozoic infracrustal medium- to high-K metamorphic basaltic rocks in the Cathaysia Block, which was caused by the underplating of coeval mantle basaltic magmas that provided abundant heat energy for melting in a tectonic setting, with lithospheric extension and thinning during the late Jurassic period.


2021 ◽  
pp. 1-20
Author(s):  
Xiao-Fei Qiu ◽  
Qiong Xu ◽  
Tuo Jiang ◽  
Shan-Song Lu ◽  
Long Zhao

Abstract The South Qinling block, a segment of the Yangtze craton involved in the Qinling–Dabie orogen, is critical for understanding the tectonic evolution of eastern China. However, the tectonic setting of the South Qinling block and the northern margin of the Yangtze block during middle Neoproterozoic time has long been the subject of debate, with two distinctly different models (continental rift or volcanic arc) proposed. Here, a comprehensive study of zircon U–Pb geochronology and geochemistry has been carried out on the Chengwan granitic pluton from the Suizao terrane in the South Qinling block. The granites are monzogranite and syenogranite in lithology, and are mainly composed of potash feldspar, quartz, plagioclase and biotite. This suite has long been regarded as a Palaeozoic magmatic pluton, but zircon U–Pb ages of 809 ± 9 Ma and 816 ± 4 Ma are obtained in this study. The granites are metaluminous to strongly peraluminous with high alkali contents, and exhibit highly fractionated features, including high SiO2, low Zr/Hf ratios, rare earth element tetrad effects and enrichment of K and Rb. They show Hf–Nd isotopic decoupling, which may be genetically related to their petrogenetic process. Based on the geochemical features and the positive εHf(t) values of the zircons, it is indicated that the granites may have been derived from partial melting of juvenile tonalitic rocks by biotite breakdown under fluid-absent conditions. The Chengwan granite geochemically belongs to the A2-subtype granites, suggesting that it might have formed in a post-orogenic tectonic setting. The highly fractionated A-type granite in this study may represent extensional collapse shortly after the collisional events in the South Qinling block, and thus indicate a tectonic regime switch, from compression to extension, as early as middle Neoproterozoic time. Integrating our new data with documented magmatic, metamorphic and sedimentary events during middle Neoproterozoic time in the region may support a continental rift model, and argues against arc models.


2021 ◽  
pp. 1-22
Author(s):  
Jia-Hao Jing ◽  
Hao Yang ◽  
Wen-Chun Ge ◽  
Yu Dong ◽  
Zheng Ji ◽  
...  

Abstract Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.


Sign in / Sign up

Export Citation Format

Share Document