scholarly journals Biomass of external mycelium of ectomycorrhizal fungi in Norway spruce stands in Poland

2015 ◽  
Vol 50 (1) ◽  
Author(s):  
Leszek Karliński ◽  
Maria Rudawska ◽  
Tomasz Leski ◽  
Barbara Kieliszewska-Rokicka

<p>Biomass of extramatrical mycorrhizal mycelium (EMM) was examined under canopies of mature Norway spruce trees grown in different forest stands in Poland. Two mountain forest sites (Brenna and Salmopol), one upland site (Zwierzyniec) and one lowland site (Mirachowo) have been investigated, using sand-filled mesh-bags method. The in-grow mesh-bags were buried in the soil for 12 months (since October up to the next October) or for 4 months (since June up to October) at four depths at each site: 5, 15, 30 and 45 cm (Brenna and Salmopol) or 60 cm (Zwierzyniec and Mirachowo). The mycelium biomass was estimated from the ergosterol content determined in the mesh-bags. The results indicated significant differences in EMM production and their vertical distribution between the mountain and the upland and lowland forest sites. The lowest EMM biomass was found at the experimental plot in the mountainious site Brenna. Considerable decrease of EMM biomass with the soil depth was recorded after 12 months of the mesh-bags incubation in soil in the upland and lowland sites, while in the mountain forests decrease of the EMM biomass in the lower soil depths diminished more gradually EMM biomass determined in the mesh-bags placed in soil at the upper 5 and 15 cm tended to be higher after 4 months than after 12 months of incubation period. Such results suggest that the time necessary for evaluation of EMM biomass in soil may be limited to the summer–autumn months, when the production of EMM is the highest. Variable stress factors can influence decreased ectomycorrhizal mycelium production and/or their destruction. Further research in different forest types and regions are needed for better understanding factors determining EMM biomass production and surviving in soil.</p>

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 841
Author(s):  
Iveta Desaine ◽  
Annija Kārkliņa ◽  
Roberts Matisons ◽  
Anna Pastare ◽  
Andis Adamovičs ◽  
...  

The increased removal of forest-derived biomass with whole-tree harvesting (WTH) has raised concerns about the long-term productivity and sustainability of forest ecosystems. If true, this effect needs to be factored in the assessment of long-term feasibility to implement such a drastic forest management measure. Therefore, the economic performance of five experimental plantations in three different forest types, where in 1971 simulated WTH event occurred, was compared with pure, planted and conventionally managed (CH) Norway spruce stands of similar age and growing conditions. Potential incomes of CH and WTH stands were based on timber prices for period 2014–2020. However, regarding the economics of root and stump biomass utilization, they were not included in the estimates. In any given price level, the difference of internal rate of return between the forest types and selected managements were from 2.5% to 6.2%. Therefore, Norway spruce stands demonstrate good potential of independence regardless of stump removal at the previous rotation.


2012 ◽  
Vol 49 (No. 7) ◽  
pp. 302-312 ◽  
Author(s):  
M. Svoboda

This paper deals with large-scale mountain forest decline in the &Scaron;umava National Park. The changes in biotic and abiotic properties of forest sites follow the tree layer disintegration. Changed microclimatic conditions such as intensity of irradiance, moisture and temperature of the top holorganic layers together with altered development of ground vegetation could strongly affect the values of microbiological respiration activity and the rates of nitrogen mineralization and nitrification. Soil substrates, built of organic mater, located on stony locations, are endangered by introskeletal erosion. This paper compares these features in pairs of research plots, consisting of dead or cut forest and of living stand. According to the results of this study, higher rates of organic matter decomposition, transformed dynamics of nitrogen and other nutrients and possible nutrient leaching from soil solutions were demonstrated in the forest floor under declined spruce stands. The extent and seriousness of these adverse processes for forest soils are strongly site dependent.


Author(s):  
Martina Dokulilová ◽  
Josef Suchomel

Abundance of common shrew (Sorex araneus) was evaluated on selected forest sites in Moravia, Czech Republic. Six types of habitats were assessed: forest clearings and mature forests in lowlands (173 – 233 m), uplands (360 – 600 m), and mountains (600 – 1200 m). Data were collected over five‑year‑long periods; 2006 – 2010 (uplands) and 2007 – 2011 (lowlands and mountains). Small terrestrial mammals were captured using snap traps laid in lines. In total, 200 individuals of common shrew were trapped. Relative abundance among different habitats was statistically evaluated. The highest relative abundance was found in mountain forest clearings (n = 132, rA = 0.719). Lower abundance was in upland forest clearings (n = 15, rA = 0.384), in mature mountain forests (n = 32, rA = 0.355), and in the lowland forest clearings (n = 9, rA = 0.109). The lowest abundance was in mature upland forests (n = 9, rA = 0.031) and in mature lowland forests (n = 3, rA = 0.011). Differences between sites were statistically significant. Among all altitudes, shrew populations in plantations were significantly more numerous than those in mature forests. Mountain forest clearings with dense herb layer proved to be the most suitable habitat while mature lowland forests with less developed herbaceous layer were the least suitable. Forest clearings proved to be an important refuge for the populations of common shrew.


2015 ◽  
Vol 76 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Marcin Szydlarski ◽  
Jerzy Modrzyński

Abstract The Kaszuby Lake District is located beyond the natural range of Norway spruce, however its share in local forest stands is considerable (14.8%) and its vitality and growth are here not less than within the natural range. The study presents the results of stock-taking of natural regeneration of Norway spruce in this region in year 2002 and 2012 and the relevant silvicultural recommendations. The stock of spruce natural regeneration was taken using the electronic database of the Regional Headquarters of State Forests in Gdańsk. The regeneration was put into following categories: seedlings (height below 0.5 m), lower advanced growth (height above 0.5 m and DBH below 7 cm), higher advanced growth (height above 3 m and DBH above 7 cm) and undergrowth (with dominating self sown spruce). In total 20 834 ha of Norway spruce natural regenerations were listed in year 2002 and 26 016 ha in year 2012 (increase by 24.9%). Most of them occur in fresh sites suited for mixed deciduous forests (LMśw) - in years 2002 and 2012 respectively 52.5% and 50.1%, and fresh sites suited for mixed coniferous forests (BMśw) - in years 2002 and 2012 respectively 30.4% and 32%. The increase of natural regeneration of Norway spruce in this period was connected with the 23.6% decrease in volume of spruce stands in age of above 40 years. Majority of spontaneously arriving spruce regenerations turn to the undergrowth, because of unfavorable light conditions under canopy and much to high density of seedlings and advanced growth. Good quality advanced growth on suited forest sites should be uncovered by thinning cuttings and consequently included into the future multispecies stands, with Norway spruce share up to 30%.


2011 ◽  
Vol 55 (1) ◽  
pp. 33-45 ◽  
Author(s):  
Bernt-Håvard Øyen ◽  
Petter Nilsen ◽  
Fredrik Bøhler ◽  
Kjell Andreassen

Abstract Models for predicting diameter increment in multi-storey spruce stands following mountain forest selective cutting (MFS) were developed. They were based on increment cores, tree ring analyses and stump registrations. The presented models rely upon time series data from 1600 trees in thirty-one Norway spruce stands in south-eastern and central parts of Norway. The selective cuttings were heavy; on average two thirds of the standing volume were cut. The increment following the interventions was highly variable, resulting in large random variability in the models with R2 varying between 0.18-0.31 for individual tree diameter growth and 0.40-0.50 for mean tree stand diameter growth. Dummy variables referring to three first 5-year periods after cutting were found to increase the precision and significantly reduce the random error. Selected models were validated using a test material from central Norway and also compared with the mostly applied Norwegian diameter increment models. Despite a large random variation in all models, the model performances appeared logical and the general fit to the data was acceptable. Based on tests, two diameter increment models are recommended for future yield prognoses in MFS. The models should also be of interest for wider use in other parts of the Nordic and Baltic boreal zone.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 416
Author(s):  
Tuija Aronen ◽  
Susanna Virta ◽  
Saila Varis

Telomeres i.e., termini of the eukaryotic chromosomes protect chromosomes during DNA replication. Shortening of telomeres, either due to stress or ageing is related to replicative cellular senescence. There is little information on the effect of biotechnological methods, such as tissue culture via somatic embryogenesis (SE) or cryopreservation on plant telomeres, even if these techniques are widely applied. The aim of the present study was to examine telomeres of Norway spruce (Picea abies (L.) Karst.) during SE initiation, proliferation, embryo maturation, and cryopreservation to reveal potential ageing or stress-related effects that could explain variation observed at SE process. Altogether, 33 genotypes from 25 families were studied. SE initiation containing several stress factors cause telomere shortening in Norway spruce. Following initiation, the telomere length of the embryogenic tissues (ETs) and embryos produced remains unchanged up to one year of culture, with remarkable genotypic variation. Being prolonged in vitro culture can, however, shorten the telomeres and should be avoided. This is achieved by successful cryopreservation treatment preserving telomere length. Somatic embryo production capacity of the ETs was observed to vary a lot not only among the genotypes, but also from one timepoint to another. No connection between embryo production and telomere length was found, so this variation remains unexplained.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 163
Author(s):  
Jan Světlík ◽  
Jan Krejza ◽  
Pavel Bednář

Tree growth depends on many factors such as microsite conditions, vitality, and variations in climate and genetics. It is generally accepted that higher growth indicates both an economic benefit and better vitality of any tree. Here we use a modified approach of evaluating tree social area to study mutual tree competition based on the orientation and shape of trees social area. The investigation was performed in nine Norway spruce stands in the Czech Republic. The objective of this study performed from 2008 to 2012 was to quantify relative tree radial increments with respect to the lowest and highest competition found in specific sectors of tree social area (AS). Specific groups of trees (tree classes) were evaluated according to their classes (dominant, co-dominant and sub-dominant) and their composition status in ninety-degree sectors of AS using established classifying rules. The results showed that a spatially-available area (AA) is an inappropriate parameter for predicting tree growth, whereas AS provided robust explanatory power to predict relative radial growth. Tree size was observed as an important indicator of relative radial increments. A significantly positive correlation was found for a radial increment of sub-dominant trees with the lowest competition from western directions; whereas a negative correlation was observed when the lowest competition was observed from eastern directions. For dominant trees, there was an evident growth reaction only when more than 50% of the AS was oriented towards one of the cardinal points. Individual differences in the orientation of tree AS may be important parameters with regard to competition and its spatial variability within an area surrounding a particular tree and deserve more detailed attention in tree growth models and practice.


2021 ◽  
pp. 126491
Author(s):  
Bettina Breuer ◽  
Otto Klemm ◽  
Yen-Jen Lai ◽  
Po-Hsiung Lin ◽  
Heta Meyer ◽  
...  
Keyword(s):  

2020 ◽  
Vol 17 (2) ◽  
pp. 281-304 ◽  
Author(s):  
Sophie Casetou-Gustafson ◽  
Harald Grip ◽  
Stephen Hillier ◽  
Sune Linder ◽  
Bengt A. Olsson ◽  
...  

Abstract. Reliable and accurate methods for estimating soil mineral weathering rates are required tools in evaluating the sustainability of increased harvesting of forest biomass and assessments of critical loads of acidity. A variety of methods that differ in concept, temporal and spatial scale, and data requirements are available for measuring weathering rates. In this study, causes of discrepancies in weathering rates between methods were analysed and were classified as being either conceptual (inevitable) or random. The release rates of base cations (BCs; Ca, Mg, K, Na) by weathering were estimated in podzolised glacial tills at two experimental forest sites, Asa and Flakaliden, in southern and northern Sweden, respectively. Three different methods were used: (i) historical weathering since deglaciation estimated by the depletion method, using Zr as the assumed inert reference; (ii) steady-state weathering rate estimated with the PROFILE model, based on quantitative analysis of soil mineralogy; and (iii) BC budget at stand scale, using measured deposition, leaching and changes in base cation stocks in biomass and soil over a period of 12 years. In the 0–50 cm soil horizon historical weathering of BCs was 10.6 and 34.1 mmolc m−2 yr−1, at Asa and Flakaliden, respectively. Corresponding values of PROFILE weathering rates were 37.1 and 42.7 mmolc m−2 yr−1. The PROFILE results indicated that steady-state weathering rate increased with soil depth as a function of exposed mineral surface area, reaching a maximum rate at 80 cm (Asa) and 60 cm (Flakaliden). In contrast, the depletion method indicated that the largest postglacial losses were in upper soil horizons, particularly at Flakaliden. With the exception of Mg and Ca in shallow soil horizons, PROFILE produced higher weathering rates than the depletion method, particularly of K and Na in deeper soil horizons. The lower weathering rates of the depletion method were partly explained by natural and anthropogenic variability in Zr gradients. The base cation budget approach produced significantly higher weathering rates of BCs, 134.6 mmolc m−2 yr−1 at Asa and 73.2 mmolc m−2 yr−1 at Flakaliden, due to high rates estimated for the nutrient elements Ca, Mg and K, whereas weathering rates were lower and similar to those for the depletion method (6.6 and 2.2 mmolc m−2 yr−1 at Asa and Flakaliden). The large discrepancy in weathering rates for Ca, Mg and K between the base cation budget approach and the other methods suggests additional sources for tree uptake in the soil not captured by measurements.


Sign in / Sign up

Export Citation Format

Share Document