scholarly journals Cytological changes observed in the successive phases of the wheat rust caused by Puccinia recondita f. sp. tritici after the treatment with Tilt 250EC

2014 ◽  
Vol 64 (4) ◽  
pp. 349-358
Author(s):  
Krystyna Brzezicka-Szymczyk ◽  
Władysław Golinowski ◽  
Czesław Zamorski

The disease process of wheat (<i>Triticum aestivum</i>) cv. Parada caused by rust (<i>Puccinia recondita</i> Rob. ex Desm. f. sp. <i>tritici</i>) and the effect of applying the fungicide Tilt 250EC are described. The application of spraying at the time of inoculation, during incubation and at the beginning of the actual disease is most effective, thus attests to the highest pathogen susceptibility to that chemical agent at these phases of the disease. Tilt 250EC (propikonazole) inhibits the ergosterol biosynthesis in the fungus cells. Application of the preparation caused the inhibition of the development and necrosis of the intra- and extracellular mycelium. Observed were: irregular growth of intercellular hyphae, perforation of septas, homogenization of protoplasts and collapsing of cells. In the haustoria observed were: the thickening of the cell wall, modification of the perihaustorial space, protoplast degeneration and finally the haustorium obliteration.

2014 ◽  
Vol 66 (2) ◽  
pp. 153-158
Author(s):  
Krystyna Brzezicka-Szymczyk ◽  
Władysław Golinowski ◽  
Czesław Zamorski

The disease process caused by rust (<em>Puccinia recondita</em> f. sp. <em>tritici</em>) in <em>Triticale</em> (<em>Triticale</em>-Wittmack cv. Bolero) and the effect of the application of the propikonazole - Tilt 250 EC are described. In plants not protected chemically one could observe the whole pathogen developmental cycle ending with the appearance of uredinia with urediniospores. The highest pathogen susceptibility to chemical agent was observed at the time of inoculation, during incubation and at the beginning of the actual disease. By inhibiting the ergosterol biosynthesis in the fungus cells the preparation (propikonazole) inhibited the development of the intra- and extracellular mycelium. The mycelium degeneration manifested itself by the irregular growth of intercellular hyphae, perforation of septa, homogenization of protoplasts and cell collapse. The thickening of the cell wall, modification of the perihaustorial space and protoplast obliteration were observed in the haustoria.


2019 ◽  
Vol 19 (10) ◽  
pp. 812-830 ◽  
Author(s):  
P. Marie Arockianathan ◽  
Monika Mishra ◽  
Rituraj Niranjan

The developing resistance in fungi has become a key challenge, which is being faced nowadays with the available antifungal agents in the market. Further search for novel compounds from different sources has been explored to meet this problem. The current review describes and highlights recent advancement in the antifungal drug aspects from plant and marine based sources. The current available antifungal agents act on specific targets on the fungal cell wall, like ergosterol synthesis, chitin biosynthesis, sphingolipid synthesis, glucan synthesis etc. We discuss some of the important anti-fungal agents like azole, polyene and allylamine classes that inhibit the ergosterol biosynthesis. Echinocandins inhibit β-1, 3 glucan synthesis in the fungal cell wall. The antifungals poloxins and nikkomycins inhibit fungal cell wall component chitin. Apart from these classes of drugs, several combinatorial therapies have been carried out to treat diseases due to fungal resistance. Recently, many antifungal agents derived from plant and marine sources showed potent activity. The renewed interest in plant and marine derived compounds for the fungal diseases created a new way to treat these resistant strains which are evident from the numerous literature publications in the recent years. Moreover, the compounds derived from both plant and marine sources showed promising results against fungal diseases. Altogether, this review article discusses the current antifungal agents and highlights the plant and marine based compounds as a potential promising antifungal agents.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guiming Deng ◽  
Fangcheng Bi ◽  
Jing Liu ◽  
Weidi He ◽  
Chunyu Li ◽  
...  

AbstractBackgroundBanana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musaspp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach.ResultsA total of 127 differentially expressed genes and 48 differentially accumulated metabolites were detected between the mutant and its wild type. Metabolites belonging to amino acid and its derivatives, flavonoids, lignans, coumarins, organic acids, and phenolic acids were up-regulated in the mutant. The transcriptome analysis showed the differential regulation of genes related to the gibberellin pathway, auxin transport, cell elongation, and cell wall modification. Based on the regulation of gibberellin and associated pathway-related genes, we discussed the involvement of gibberellins in pseudostem elongation in the mutant banana. Genes and metabolites associated with cell wall were explored and their involvement in cell extension is discussed.ConclusionsThe results suggest that gibberellins and associated pathways are possibly developing the observed semi-dwarf pseudostem phenotype together with cell elongation and cell wall modification. The findings increase the understanding of the mechanisms underlying banana stem height and provide new clues for further dissection of specific gene functions.


2004 ◽  
Vol 48 (10) ◽  
pp. 3871-3876 ◽  
Author(s):  
Sarit Markovich ◽  
Aya Yekutiel ◽  
Itamar Shalit ◽  
Yona Shadkchan ◽  
Nir Osherov

ABSTRACT The antifungal agent caspofungin (CAS) specifically interferes with glucan synthesis and cell wall formation. To further study the cellular processes affected by CAS, we analyzed a Saccharomyces cerevisiae mutant collection (4,787 individual knockout mutations) to identify new genes affecting susceptibility to the drug. This collection was screened for increased CAS sensitivity (CAS-IS) or increased CAS resistance (CAS-IR). MICs were determined by the broth microdilution method. Disruption of 20 genes led to CAS-IS (four- to eightfold reductions in the MIC). Eleven of the 20 genes are involved in cell wall and membrane function, notably in the protein kinase C (PKC) integrity pathway (MID2, FKS1, SMI1, and BCK1), chitin and mannan biosynthesis (CHS3, CHS4, CHS7, and MNN10), and ergosterol biosynthesis (ERG5 and ERG6). Four of the 20 genes (TPO1, VPS65, VPS25, and CHC1) are involved in vacuole and transport functions, 3 of the 20 genes (CCR4, POP2, and NPL3) are involved in the control of transcription, and 2 of the 20 genes are of unknown function. Disruption of nine additional genes led to CAS-IR (a fourfold increase of MIC). Five of these nine genes (SLG1, ERG3, VRP1, CSG2, and CKA2) are involved in cell wall function and signal transduction, and two of the nine genes (VPS67 and SAC2) are involved in vacuole function. To assess the specificity of susceptibility to CAS, the MICs of amphotericin B, fluconazole, flucytosine, and calcofluor for the strains were tested. Seven of 20 CAS-IS strains (with disruption of FKS1, SMI1, BCK1, CHS4, ERG5, TPO1, and ILM1) and 1 of 9 CAS-IR strains (with disruption of SLG1) demonstrated selective susceptibility to CAS. To further explore the importance of PKC in CAS susceptibility, the activity of the PKC inhibitor staurosporine in combination with CAS was tested against eight Aspergillus clinical isolates by the microdilution assay. Synergistic or synergistic-to-additive activities were found against all eight isolates by use of both MIC and minimum effective concentration endpoints.


2020 ◽  
Vol 71 (18) ◽  
pp. 5631-5644 ◽  
Author(s):  
Zhong Tang ◽  
Yijie Wang ◽  
Axiang Gao ◽  
Yuchen Ji ◽  
Baoyun Yang ◽  
...  

Abstract Straighthead disease is a physiological disorder in rice with symptoms of sterile spikelets, distorted husks, and erect panicles. Methylated arsenic species have been implicated as the causal agent of the disease, but direct evidence is lacking. Here, we investigated whether dimethylarsinic acid (DMA) causes straighthead disease and its effect on the transcriptome of young panicles. DMA addition caused typical straighthead symptoms in hydroponic culture, which were alleviated by silicon addition. DMA addition to soil at the tillering to flowering stages induced straighthead disease. Transgenic rice expressing a bacterial arsenite methyltransferase gene gained the ability to methylate arsenic to mainly DMA, with the consequence of inducing straighthead disease. Field surveys showed that seed setting rate decreased with increasing DMA concentration in the husk, with an EC50 of 0.18 mg kg−1. Transcriptomic analysis showed that 364 and 856 genes were significantly up- and down-regulated, respectively, in the young panicles of DMA-treated plants compared with control, whereas Si addition markedly reduced the number of genes affected. Among the differentially expressed genes, genes related to cell wall modification and oxidative stress responses were the most prominent, suggesting that cell wall metabolism is a sensitive target of DMA toxicity and silicon protects against this toxicity.


Sign in / Sign up

Export Citation Format

Share Document